Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications

New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.

[1]  K. Goudarzi,et al.  An experimental investigation on the simultaneous effect of CuO–H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector , 2014 .

[2]  C. T. Nguyen,et al.  New temperature dependent thermal conductivity data for water-based nanofluids , 2009 .

[3]  Hui Shen,et al.  Synthesis of TiO2 submicro-rings and their application in dye-sensitized solar cell , 2011 .

[4]  Saeed Zeinali Heris,et al.  EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER OF AL2O3/WATER NANOFLUID IN CIRCULAR TUBE , 2007 .

[5]  Sanjay Agrawal,et al.  Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module , 2011 .

[6]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[7]  Yi-Hsuan Hung,et al.  Evaluation of the thermal performance of a heat pipe using alumina nanofluids , 2013 .

[8]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[9]  O. Mahian,et al.  Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications , 2013 .

[10]  Davood Domiri Ganji,et al.  Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method , 2014 .

[11]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[12]  Masoud Rahimi,et al.  Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid ☆ , 2014 .

[13]  S. Sahu,et al.  Thermal Performance of Nanofluid Charged Heat Pipe With Phase Change Material for Electronics Cooling , 2015 .

[14]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[15]  Seyed Hassan Hashemabadi,et al.  Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator , 2013 .

[16]  H. Oztop,et al.  A review on natural convective heat transfer of nanofluids , 2012 .

[17]  Seyed Hassan Hashemabadi,et al.  CFD simulation of heat transfer enhancement of Al2O3/water and Al2O3/ethylene glycol nanofluids in a car radiator , 2014 .

[18]  N. Rahim,et al.  Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid , 2014 .

[19]  W. Jong,et al.  Flows in rectangular microchannels driven by capillary force and gravity , 2007 .

[20]  Huijin Xu,et al.  Influence of wall roughness models on fluid flow and heat transfer in microchannels , 2015 .

[21]  Goodarz Ahmadi,et al.  Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels , 2013, Entropy.

[22]  Robert H. Davis The effective thermal conductivity of a composite material with spherical inclusions , 1986 .

[23]  S. M. Peyghambarzadeh,et al.  Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators , 2011 .

[24]  Brahim Bourouga,et al.  Fluid flow and convective heat transfer in flat microchannels , 2009 .

[25]  Wei-Mon Yan,et al.  Enhancement of thermal performance in double-layered microchannel heat sink with nanofluids , 2012 .

[26]  Jérôme Barrau,et al.  An experimental study of a new hybrid jet impingement/micro-channel cooling scheme , 2010 .

[27]  Seok-Ho Rhi,et al.  Thermal characteristics of grooved heat pipe with hybrid nanofluids , 2011 .

[28]  Masoud Rahimi,et al.  Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study , 2013 .

[29]  W. A. G. Voss,et al.  Generalized approach to multiphase dielectric mixture theory , 1973 .

[30]  M. Ashouri,et al.  Comparing the thermal performance of water, Ethylene Glycol, Alumina and CNT nanofluids in CPU cooling: Experimental study , 2014 .

[31]  V. Bianco,et al.  An investigation of the thermal performance of cylindrical heat pipes using nanofluids , 2010 .

[32]  M. M. Rahman,et al.  Heat transfer in rectangular microchannels during volumetric heating of the substrate , 2007 .

[33]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[34]  Clement Kleinstreuer,et al.  Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids , 2005 .

[35]  S. Sahu,et al.  Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid—Experimental Study , 2014 .

[36]  Dennis Y.C. Leung,et al.  Towards orientation-independent performance of membraneless microfluidic fuel cell: Understanding the gravity effects , 2012 .

[37]  M. G. Mousa,et al.  Effect of nanofluid concentration on the performance of circular heat pipe , 2011 .

[38]  H. Oztop,et al.  A review on how the researchers prepare their nanofluids , 2014 .

[39]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[40]  S. Sahu,et al.  Comparative Study of Cooling Performance of Automobile Radiator Using Al2O3-Water and Carbon Nanotube-Water Nanofluid , 2014 .

[41]  H. Seyf,et al.  Performance Augmentation and Optimization of Aluminum Oxide-Water Nanofluid Flow in a Two-Fluid Microchannel Heat Exchanger , 2014 .

[42]  A. Behzadmehr,et al.  A new model for calculating the effective viscosity of nanofluids , 2009 .

[43]  D. Das,et al.  Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator , 2010 .

[44]  C. Kleinstreuer,et al.  Thermal performance of nanofluid flow in microchannels , 2008 .

[45]  V. Sridhara,et al.  Al2O3-based nanofluids: a review , 2011, Nanoscale research letters.

[46]  Jean-Christophe Crebier,et al.  Drift region integrated microchannel structure for direct cooling of power electronics , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[47]  Ravikanth S. Vajjha,et al.  An Experimental Determination of the Viscosity of Propylene Glycol/Water Based Nanofluids and Development of New Correlations , 2015 .

[48]  Amin Behzadmehr,et al.  Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach , 2007 .

[49]  Saeed Zeinali Heris,et al.  First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: Effects of nanoparticle shape and tube materials , 2014 .

[50]  M. Al-Nimr,et al.  Fully developed thermal behaviors for parallel flow microchannel heat exchanger , 2009 .

[51]  Rahman Saidur,et al.  Nanofluid As a Coolant for Electronic Devices: Cooling of Electronic Devices , 2012 .

[52]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[53]  B. Sivaraman,et al.  EXPERIMENTAL ANALYSIS OF CYLINDRICAL HEAT PIPE USING COPPER NANOFLUID WITH AN AQUEOUS SOLUTION OF n-HEXANOL , 2012 .

[54]  Transient Heat Transfer Analysis of a Micro Heat Exchanger , 2013 .

[55]  Thanhtrung Dang,et al.  Comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers , 2011 .

[56]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[57]  Y. Joshi,et al.  Single-Phase Forced Convection in Microchannels with Carbon Nanotubes for Electronics Cooling Applications , 2008 .

[58]  Dong Liu,et al.  Single-Phase Thermal Transport of Nanofluids in a Minichannel , 2011 .

[59]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[60]  R. Sureshkumar,et al.  Heat transfer characteristics of nanofluids in heat pipes: A review , 2013 .

[61]  H. Kulah,et al.  Heat transfer and pressure drop experiments on CMOS compatible microchannel heat sinks for monolithic chip cooling applications , 2012 .

[62]  Daniel Attinger,et al.  Can segmented flow enhance heat transfer in microchannel heat sinks , 2010 .

[63]  M. A. Amalina,et al.  Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid , 2015 .

[64]  Robert A. Taylor,et al.  Applicability of nanofluids in high flux solar collectors , 2011 .

[65]  R. Prasher,et al.  Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids , 2006 .

[66]  Tin-Tai Chow,et al.  A Review on Photovoltaic/Thermal Hybrid Solar Technology , 2010, Renewable Energy.

[67]  P. K. Nagarajan,et al.  Nanofluids for Solar Collector Applications: A Review , 2014 .

[68]  E. Wang,et al.  Optimization of nanofluid volumetric receivers for solar thermal energy conversion , 2011 .

[69]  J. I. Rosell,et al.  Stepwise varying width microchannel cooling device for uniform wall temperature: Experimental and numerical study , 2015 .

[70]  Jian Feng Guo,et al.  Experimental Investigation on Thermophysical Performance of BN/EG Nanofluids Influenced by Dispersant , 2015 .

[71]  Satish G. Kandlikar,et al.  Evolution of Microchannel Flow Passages--Thermohydraulic Performance and Fabrication Technology , 2003 .

[72]  Paisarn Naphon,et al.  Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency , 2008 .

[73]  Suhaib Umer Ilyas,et al.  Preparation, Sedimentation, and Agglomeration of Nanofluids , 2014 .

[74]  S. Shankar,et al.  Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract , 2014 .

[75]  Shuo Yang,et al.  Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids , 2009 .

[76]  Michael W. Collins,et al.  Single-phase heat transfer in microchannels The importance of scaling effects , 2009 .

[77]  Milad Tajik Jamal-Abad,et al.  An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors , 2014 .

[78]  Indranil Ghosh,et al.  Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids , 2015 .

[79]  I. Plazl,et al.  Theoretical and experimental study of iron catalyst preparation by chemical vapor deposition of ferrocene in air , 2014 .

[80]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[81]  H. Mohammed,et al.  The impact of various nanofluid types on triangular microchannels heat sink cooling performance , 2011 .

[82]  L. L. Vasiliev,et al.  Micro and miniature heat pipes – Electronic component coolers , 2008 .

[83]  G. Morini,et al.  Hydraulic and thermal design of a gas microchannel heat exchanger , 2012 .

[84]  M. Al-Nimr,et al.  Heat transfer characteristics of parallel and counter flow micro-channel heat exchangers with varying wall resistance , 2011 .

[85]  I. A. Stogiannis,et al.  Efficacy of SiO2 nanofluids in a miniature plate heat exchanger with undulated surface , 2015 .

[86]  Yurong He,et al.  Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids , 2012 .

[87]  Madhusree Kole,et al.  Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids , 2013 .

[88]  D. Laforgia,et al.  Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids , 2013 .

[89]  Jung-Chang Wang,et al.  U- and L-shaped heat pipes heat sinks for cooling electronic components employed a least square smoothing method , 2014, Microelectron. Reliab..

[90]  A. Zamzamian,et al.  Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow , 2011 .

[91]  K. Goodson,et al.  Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method , 2008 .

[92]  T. Yousefi,et al.  An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors , 2012 .

[93]  M. Karimi,et al.  Numerical Investigation on Heat Transfer and Fluid Flow Behaviors of Viscous Fluids in a Minichannel Heat Exchanger , 2013 .

[94]  G. Xia,et al.  Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections , 2013 .

[95]  Rahman Saidur,et al.  Cooling of minichannel heat sink using nanofluids , 2012 .

[96]  T. Brunschwiler,et al.  Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks , 2013 .

[97]  S. M. Peyghambarzadeh,et al.  Experimental investigation on heat transfer performance of /water nanofluid in an air-finned heat exchanger , 2014 .

[98]  G. Morini Single-phase Convective Heat Transfer in Microchannels: a Review of Experimental Results , 2004 .

[99]  H. Shokouhmand,et al.  Investigation of a nanofluid-cooled microchannel heat sink using Fin and porous media approaches , 2009 .

[100]  I. Pop,et al.  A review of the applications of nanofluids in solar energy , 2013 .

[101]  Jason Chuang,et al.  Experimental microchannel heat sink performance studies using nanofluids , 2007 .

[102]  E. Ebrahimnia-Bajestan,et al.  Effects of Magnetic Nanofluid Fuel Combustion on the Performance and Emission Characteristics , 2014 .

[103]  T. Mckrell,et al.  Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids , 2009 .

[104]  Satish G. Kandlikar,et al.  Roughness effects at microscale - reassessing Nikuradse's experiments on liquid flow in rough tubes , 2005 .

[105]  Masoud Rahimi,et al.  Heat transfer augmentation in a hybrid microchannel solar cell , 2013 .

[106]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[107]  Duu-Jong Lee,et al.  Multi-parameters optimization for microchannel heat sink using inverse problem method , 2011 .

[108]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[109]  Yogendra Joshi,et al.  Experimental and numerical study of sidewall profile effects on flow and heat transfer inside microchannels , 2007 .

[110]  Yuwen Zhang,et al.  Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling. , 2015, Journal of nanoscience and nanotechnology.

[111]  F. He,et al.  Transitional and turbulent flow in a circular microtube , 2007 .

[112]  A. Pise,et al.  Performance Investigation of an Automotive Car Radiator Operated With Nanofluid as a Coolant , 2014 .

[113]  Boming Yu,et al.  The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles , 2007 .

[114]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[115]  Seong‐Hyeon Hong,et al.  Synthesis of nanocobalt powders for an anode material of lithium-ion batteries by chemical reduction and carbon coating , 2014 .

[116]  Chiu Han-Chieh,et al.  The heat transfer characteristics of liquid cooling heatsink containing microchannels , 2011 .

[117]  S. Kandlikar History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review , 2012 .

[118]  J. I. Rosell,et al.  Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration , 2011 .

[119]  Normah Mohd-Ghazali,et al.  Thermal and hydrodynamic analysis of microchannel heat sinks: A review , 2013 .

[120]  Chuncheng Zuo,et al.  A novel multi-layer manifold microchannel cooling system for concentrating photovoltaic cells , 2015 .

[121]  Ching-Jenq Ho,et al.  Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles , 2013 .

[122]  Effect of microtube length on heat transfer enhancement of an water/Al2O3 nanofluid at high Reynolds numbers , 2013 .

[123]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[124]  R. Nicoletti The Importance of the Heat Capacity of Lubricants With Nanoparticles in the Static Behavior of Journal Bearings , 2014 .

[125]  H. Oztop,et al.  Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? , 2012 .

[126]  Chi-Chuan Wang,et al.  Effect of non-uniform heating on the performance of the microchannel heat sinks☆ , 2013 .

[127]  S. Kandlikar,et al.  Characterization of the effect of surface roughness and texture on fluid flow—past, present, and future , 2006 .

[128]  Yoshio Utaka,et al.  Improved performance of secondary heat exchanger for latent heat recovery from flue gas using mini-tubes , 2014 .

[129]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[130]  I. Mudawar,et al.  Theory and experimental validation of cross-flow micro-channel heat exchanger module with reference to high Mach aircraft gas turbine engines , 2011 .

[131]  M. Mehrali,et al.  Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets , 2014, Nanoscale Research Letters.

[132]  Wei-Mon Yan,et al.  Heat transfer enhancement in microchannel heat sinks using nanofluids , 2012 .

[133]  Yun Cui,et al.  Study of Photovoltaic/Thermal Systems with MgO-Water Nanofluids Flowing over Silicon Solar Cells , 2012, 2012 Asia-Pacific Power and Energy Engineering Conference.

[134]  A. Mujumdar,et al.  Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer , 2014 .

[135]  S. C. Kaushik,et al.  Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology , 2012 .

[136]  Ching-Jenq Ho,et al.  An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid , 2010 .

[137]  Somchai Wongwises,et al.  Enhancement of heat transfer using nanofluids—An overview , 2010 .

[138]  R. Moss,et al.  The significance of scaling effects in a solar absorber plate with micro-channels , 2015 .

[139]  E. Kurtoğlu,et al.  Experimental Study on Convective Heat Transfer Performance of Iron Oxide Based Ferrofluids in Microtubes , 2014 .

[140]  V. Bianco,et al.  Numerical investigation of nanofluids forced convection in circular tubes , 2009 .

[141]  Shuofeng Wang,et al.  Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid , 2013 .

[142]  Ching-Jenq Ho,et al.  Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles , 2014 .

[143]  Rahman Saidur,et al.  Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review , 2011 .

[144]  O. N. Şara,et al.  Experimental study of laminar forced convective mass transfer and pressure drop in microtubes , 2009 .

[145]  Saad Mekhilef,et al.  Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector , 2013 .

[146]  J. Buongiorno,et al.  Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes , 2008 .

[147]  R. Saidur,et al.  Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink , 2013 .

[148]  Shuangfeng Wang,et al.  Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems , 2013 .

[149]  Seung Won Lee,et al.  Critical heat flux for CuO nanofluid fabricated by pulsed laser ablation differentiating deposition characteristics , 2012 .

[150]  P. Cheng,et al.  Flow boiling phenomena in a single annular flow regime in microchannels (II): Reduced pressure drop and enhanced critical heat flux , 2014 .

[151]  Wael I. A. Aly Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers , 2014 .

[152]  Somchai Wongwises,et al.  Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid , 2008 .

[153]  K. Wasewar,et al.  Heat transfer study on concentric tube heat exchanger using TiO2–water based nanofluid , 2014 .

[154]  Wenhua Yu,et al.  Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements , 2008 .

[155]  Kannan M. Munisamy,et al.  Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review , 2013 .

[156]  Guillaume Polidori,et al.  A note on heat transfer modelling of Newtonian nanofluids in laminar free convection , 2007 .

[157]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.

[158]  Anupam Dewan,et al.  A review of heat transfer enhancement through flow disruption in a microchannel , 2015 .

[159]  P. Ghosh,et al.  SOLAR WATER HEATING USING NANOFLUIDS-A COMPREHENSIVE OVERVIEW AND ENVIRONMENTAL IMPACT ANALYSIS , 2013 .

[160]  Yulong Ding,et al.  Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions , 2009 .

[161]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[162]  Stéphane Colin,et al.  Heat Transfer and Fluid Flow in Minichannels and Microchannels , 2005 .

[163]  Mazlan Abdul Wahid,et al.  Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts , 2013 .

[164]  Rahman Saidur,et al.  Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator) , 2010 .

[165]  I. Tavman,et al.  Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids , 2009 .

[166]  Thirumalachari Sundararajan,et al.  An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids , 2010 .

[167]  A. Pacek,et al.  The effect of nanoparticles on laminar heat transfer in a horizontal tube , 2014 .

[168]  Tooraj Yousefi,et al.  Experimental investigation on the performance of CPU coolers: Effect of heat pipe inclination angle and the use of nanofluids , 2013, Microelectron. Reliab..

[169]  Amin Behzadmehr,et al.  Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer , 2011 .

[170]  K. Wasewar,et al.  Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons , 2015 .

[171]  Thanhtrung Dang,et al.  A study on the simulation and experiment of a microchannel counter-flow heat exchanger , 2010 .

[172]  M. Talaie,et al.  Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model , 2010 .

[173]  Vincenzo Bianco,et al.  Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube , 2011 .

[174]  J. Sarkar,et al.  Performance analysis of louvered fin tube automotive radiator using nanofluids as coolants , 2013 .

[175]  K. S. Rajan,et al.  Heat transfer performance and transport properties of ZnO-ethylene glycol and ZnO-ethylene glycol-water nanofluid coolants , 2014 .

[176]  C. T. Nguyen,et al.  Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system , 2007 .

[177]  Reiyu Chein,et al.  Analysis of microchannel heat sink performance using nanofluids , 2005 .

[178]  W. Tao,et al.  Numerical studies of simultaneously developing laminar flow and heat transfer in microtubes with thick wall and constant outside wall temperature , 2010 .

[179]  B. Sundén,et al.  Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling , 2013 .

[180]  R. Mamat,et al.  Experimental Investigation of Thermal Conductivity and Electrical Conductivity of Al2O3 Nanofluid in Water - Ethylene Glycol Mixture for Proton Exchange Membrane Fuel Cell Application , 2015 .

[181]  Piyanut Nitiapiruk,et al.  Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical models☆ , 2013 .

[182]  S. Suresh,et al.  Convective performance of CuO/water nanofluid in an electronic heat sink , 2012 .

[183]  Ming-Hui Chang,et al.  Preparation of copper oxide nanoparticles and its application in nanofluid , 2011 .

[185]  Jung-Yeul Jung,et al.  Fluid flow and heat transfer in microchannels with rectangular cross section , 2008 .

[186]  O. N. Şara,et al.  PRESSURE DROP AND POINT MASS TRANSFER IN A RECTANGULAR MICROCHANNEL , 2009 .

[187]  A. T. Pise,et al.  Performance of nanofluid-charged solar water heater by solar tracking system , 2012, IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012).

[188]  M. Saffar-Avval,et al.  Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink , 2012 .

[189]  N. Nguyen,et al.  Slug flow heat transfer without phase change in microchannels: A review , 2015 .

[190]  Somchai Wongwises,et al.  A critical review of convective heat transfer of nanofluids , 2007 .

[191]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[192]  S. M. Peyghambarzadeh,et al.  Improving the cooling performance of automobile radiator with Al2O3/water nanofluid , 2011 .

[193]  Indrani Ghosh,et al.  Low Reynolds number thermo-hydraulic characterization of offset and diamond minichannel metal heat sinks , 2013 .

[194]  Rosli Abu Bakar,et al.  Study of forced convection nanofluid heat transfer in the automotive cooling system , 2014 .

[195]  B. Sundén,et al.  Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling , 2012 .

[196]  Norshah Hafeez Shuaib,et al.  Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink , 2011 .

[197]  Jeff Punch,et al.  Friction factor and heat transfer in multiple microchannels with uniform flow distribution , 2008 .

[198]  A. Pacek,et al.  Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids , 2012 .

[199]  S. Sanaye,et al.  Flow and heat transfer characteristics of water and ethylene glycol–water in a multi-port serpentine meso-channel heat exchanger , 2011 .

[200]  Stephen U. S. Choi,et al.  Cooling performance of a microchannel heat sink with nanofluids , 2006 .

[201]  O. Manca,et al.  Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method , 2015 .

[202]  D. Wen,et al.  Flow and migration of nanoparticle in a single channel , 2009 .

[203]  Gianpiero Colangelo,et al.  A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids , 2013 .

[204]  Xiaowu Zhang,et al.  Trapezoidal Microchannel Heat Sink With Pressure-Driven and Electro-Osmotic Flows for Microelectronic Cooling , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[205]  Mousa Farhadi,et al.  EXPERIMENTAL INVESTIGATION OF FORCE CONVECTION HEAT TRANSFER IN A CAR RADIATOR FILLED WITH SIO2-WATER NANOFLUID , 2014 .

[206]  S. Garimella,et al.  Investigation of heat transfer in rectangular microchannels , 2005 .

[207]  Jung-Chang Wang,et al.  Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration , 2011 .

[208]  A. Sözen,et al.  Heat transfer enhancement using MgO/water nanofluid in heat pipe , 2015 .

[209]  Ching-Jenq Ho,et al.  Experiment on thermal performance of water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a minichannel heat sink , 2014 .

[210]  Stability and Thermal Conductivity Characteristics of Nanofluids (H2O/CH3OH + NaCl + Al2O3 Nanoparticles) for CO2 Absorption Application , 2012 .

[211]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[212]  T. Goto,et al.  Effect of laser wavelength on phase and microstructure of TiO2 films prepared by laser chemical vapor deposition , 2014 .

[213]  Songping Mo,et al.  Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate , 2014 .

[214]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[215]  D. Poulikakos,et al.  Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids: An experimental study , 2011 .

[216]  Y. Hung,et al.  Multiwalled carbon nanotube nanofluids used for heat dissipation in hybrid green energy systems , 2014 .

[217]  S. Garimella,et al.  Measurement and modeling of condensation heat transfer in non-circular microchannels , 2010 .

[218]  Chien-Hsin Chen,et al.  Study on the thermal behavior and cooling performance of a nanofluid-cooled microchannel heat sink. , 2011 .

[219]  Huiying Wu,et al.  Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels , 2009 .

[220]  K. A. Moharram,et al.  Enhancing the performance of photovoltaic panels by water cooling , 2013 .

[221]  C. T. Nguyen,et al.  Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties , 2006 .

[222]  W. Yan,et al.  Analysis of heat transfer characteristics of double-layered microchannel heat sink , 2012 .

[223]  E. Skoplaki,et al.  ON THE TEMPERATURE DEPENDENCE OF PHOTOVOLTAIC MODULE ELECTRICAL PERFORMANCE: A REVIEW OF EFFICIENCY/ POWER CORRELATIONS , 2009 .

[224]  Zhen-hua Liu,et al.  A new frontier of nanofluid research – Application of nanofluids in heat pipes , 2012 .

[225]  Rahman Saidur,et al.  Investigating the Heat Transfer Performance and Thermophysical Properties of Nanofluids in a Circular Micro-channel , 2013 .

[226]  Sarit K. Das,et al.  Effect of particle size on the convective heat transfer in nanofluid in the developing region , 2009 .

[227]  M. Corcione Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids , 2011 .

[228]  M. Rahimi,et al.  Numerical study of axial heat conduction effects on the local Nusselt number at the entrance and ending regions of a circular microchannel , 2012 .

[229]  Shanglong Xu,et al.  A numerica1 study of fluid flow and heat transfer in different microchannel heat sinks for electronic chip cooling , 2012 .

[230]  M. H. Kayhani,et al.  Experimental analysis of turbulent convective heat transfer and pressure drop of AI 2 o 3 /water nanofluid in horizontal tube , 2012 .

[231]  Thomas Brunschwiler,et al.  Energy efficient hotspot-targeted embedded liquid cooling of electronics , 2015 .

[232]  J. Kumar,et al.  CFD analysis of heat transfer and pressure drop in helically coiled heat exchangers using Al2O3 / water nanofluid , 2015 .

[233]  C. T. Nguyen,et al.  Heat transfer behaviours of nanofluids in a uniformly heated tube , 2004 .

[234]  Reza Kamali,et al.  Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids , 2010 .

[235]  Young-Chull Ahn,et al.  Production and dispersion stability of nanoparticles in nanofluids , 2008 .

[236]  T. K. Dey,et al.  Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids , 2012 .

[237]  C. Choi,et al.  Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants , 2008 .

[238]  Yanhui Yuan,et al.  The effect of particle size on the thermal conductivity of alumina nanofluids , 2009 .

[239]  Nandy Putra,et al.  Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids , 2013 .

[240]  A. M. El-Leathy,et al.  The Effect of Nanofluid Concentration on the Cooling System of Vehicles Radiator , 2014 .

[241]  A. Nnanna,et al.  Experimental Study of Fluid Flow in Microchannel , 2008 .

[242]  Saeed Zeinali Heris,et al.  Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) , 2014 .

[243]  Boming Yu,et al.  A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles , 2006 .

[244]  Hussein A. Mohammed,et al.  Heat transfer enhancement of nanofluids flow in microtube with constant heat flux , 2012 .

[245]  Quan Yuan,et al.  Thermal Performance of Crossflow Microchannel Heat Exchangers , 2010 .

[246]  Nandy Putra,et al.  Thermal performance of screen mesh wick heat pipes with nanofluids , 2012 .

[247]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[248]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[249]  K. Leong,et al.  A combined model for the effective thermal conductivity of nanofluids , 2009 .

[250]  Nan Hua,et al.  Comparative Performance of an Automotive Air Conditioning System Using Micro-channel Condensers with and Without Liquid-vapor Separation , 2014 .

[251]  X. Dai,et al.  Enhanced single- and two-phase transport phenomena using flow separation in a microgap with copper woven mesh coatings , 2013 .

[252]  S. Kandlikar,et al.  An Experimental Investigation on Friction Characteristics and Heat Transfer of Air and CO2 Flow in Microtubes With Structured Surface Roughness , 2014 .

[253]  M. Izquierdo,et al.  Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger , 2009 .

[254]  S. B. Islami,et al.  Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer , 2013 .

[255]  L. Colla,et al.  Nanofluids characterization and application as nanolubricants in heat pump systems , 2015 .

[256]  Yang Li,et al.  Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid , 2012 .

[257]  Kamel Hooman,et al.  Effects of viscous heating, fluid property variation, velocity slip, and temperature jump on convection through parallel plate and circular microchannels , 2010 .

[258]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[259]  Todd Otanicar,et al.  Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector , 2012 .

[260]  Adnan Sözen,et al.  Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study , 2014 .

[261]  S. Wongwises,et al.  Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids , 2009 .

[262]  Somchai Wongwises,et al.  Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models , 2014 .

[263]  Seok Pil Jang,et al.  Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime , 2009 .

[264]  C. Nonino,et al.  Conjugate forced convection and heat conduction in circular microchannels , 2009 .

[265]  S. Abdel-Khalik,et al.  An experimental investigation of microchannel flow with internal pressure measurements , 2005 .

[266]  Real and simulated fractal aggregates , 1993 .

[267]  Haitao Hu,et al.  Modeling of nanoparticles’ aggregation and sedimentation in nanofluid , 2010 .

[268]  Robert J. Kee,et al.  The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger , 2011 .

[269]  Yildiz Bayazitoglu,et al.  Minichannels with carbon nanotube structured surfaces for cooling applications , 2011 .

[270]  Saeid Vafaei,et al.  Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel , 2012 .

[271]  S. Suresh,et al.  Heat transfer enhancement and pressure drop analysis in a helically coiled tube using Al2O3 / water nanofluid , 2014 .

[272]  Ting Ma,et al.  Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization , 2014 .

[273]  Robert A. Taylor,et al.  Nanofluid-based direct absorption solar collector , 2010 .

[274]  T. Yousefi,et al.  An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector , 2012 .

[275]  Mohamed H. A. Elnaggar,et al.  Numerical investigation of characteristics of wick structure and working fluid of U-shape heat pipe for CPU cooling , 2014, Microelectron. Reliab..

[276]  Ali Jabari Moghadam,et al.  Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector , 2014 .

[277]  R. A. Bakar,et al.  Heat transfer augmentation of a car radiator using nanofluids , 2014 .

[278]  B. Thang,et al.  Application of multiwalled carbon nanotube nanofluid for 450 W LED floodlight , 2014 .

[279]  Jung-Yeul Jung,et al.  Forced convective heat transfer of nanofluids in microchannels , 2009 .

[280]  Ravikanth S. Vajjha,et al.  Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger , 2014 .

[281]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[282]  Gianpiero Colangelo,et al.  Experimental test of an innovative high concentration nanofluid solar collector , 2015 .

[283]  Feng Zhao,et al.  Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector , 2013 .