Scale-Space Derived From B-Splines

This paper proposes a scale-space theory based on B-spline kernels. Our aim is twofold: 1) present a general framework, and show how B-splines provide a flexible tool to design various scale-space representations. In particular, we focus on the design of continuous scale-space and dyadic scale-space frame representations. A general algorithm is presented for fast implementation of continuous scale-space at rational scales. In the dyadic case, efficient frame algorithms are derived using B-spline techniques to analyze the geometry of an image. The relationship between several scale-space approaches is explored. The behavior of edge models, the properties of completeness, causality, and other properties in such a scale-space representation are examined in the framework of B-splines. It is shown that, besides the good properties inherited from the Gaussian kernel, the B-spline derived scale-space exhibits many advantages for modeling visual mechanism including the efficiency, compactness, orientation feature and parallel structure.

[1]  Michael Unser,et al.  On the asymptotic convergence of B-spline wavelets to Gabor functions , 1992, IEEE Trans. Inf. Theory.

[2]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  V. Berzins Accuracy of laplacian edge detectors , 1984 .

[5]  Roland T. Chin,et al.  Scale-Based Detection of Corners of Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  M. Unser Fast Gabor-like windowed Fourier and continuous wavelet transforms , 1994, IEEE Signal Processing Letters.

[7]  Anil K. Jain,et al.  lamda-tau-Space Representation of Images and Generalized Edge Detector , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  James J. Clark Authenticating Edges Produced by Zero-Crossing Algorithms , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  S. L. Lee,et al.  Spline Interpolation and Wavelet Construction , 1998 .

[10]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[11]  John A. Robinson,et al.  Subband image coding using watershed and watercourse lines of the wavelet transform , 1994, IEEE Trans. Image Process..

[12]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[13]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[14]  Akram Aldroubi,et al.  B-spline signal processing. II. Efficiency design and applications , 1993, IEEE Trans. Signal Process..

[15]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[16]  S. L. Lee Spline Interpolation and Wavelet Construction , 1996 .

[17]  William M. Wells,et al.  Efficient Synthesis of Gaussian Filters by Cascaded Uniform Filters , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  S. Shinnaka,et al.  Recursive Algorithms for Implementing Digital Image Filters , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Stéphane Mallat,et al.  Wavelets for a vision , 1996, Proc. IEEE.

[20]  Michael Unser,et al.  The L2-Polynomial Spline Pyramid , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[22]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[23]  Michael Unser,et al.  Ten good reasons for using spline wavelets , 1997, Optics & Photonics.

[24]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  P. Burt Fast, Hierarchical Correlations with Gaussian-Like Kernels , 1980 .

[26]  T. Poggio,et al.  Fingerprints theorems for zero crossings , 1985 .

[27]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[29]  Wu Lide,et al.  On fingerprint theorems , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[30]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[31]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Richard A. Young,et al.  GAUSSIAN DERIVATIVE MODEL FOR MACHINE VISION: VISUAL CORTEX SIMULATION. , 1986 .

[33]  Hannu Olkkonen Discrete Binomial Splines , 1995, CVGIP Graph. Model. Image Process..

[34]  Vo V. Anh,et al.  Scaling Theorems for Zero Crossings of Bandlimited Signals , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Lide Wu,et al.  On fingerprint theorems , 1988, International Conference on Pattern Recognition.

[36]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[38]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Lide Wu,et al.  Scaling Theorems for Zero-Crossings , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  I. J. Schoenberg,et al.  On the generating functions of totally positive sequences I , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Hwee Huat Tan,et al.  Periodic Orthogonal Splines and Wavelets , 1995 .

[42]  Chin-Hsing Chen,et al.  Multiscale corner detection by using wavelet transform , 1995, IEEE Trans. Image Process..

[43]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[44]  J. Sklansky,et al.  Efficient two-dimensional filters using B -spline functions , 1986 .

[45]  Michael Unser,et al.  A family of polynomial spline wavelet transforms , 1993, Signal Process..

[46]  P. Burt Fast filter transform for image processing , 1981 .

[47]  Michael Unser,et al.  Fast implementation of the continuous wavelet transform with integer scales , 1994, IEEE Trans. Signal Process..

[48]  Michael Unser,et al.  B-spline signal processing. I. Theory , 1993, IEEE Trans. Signal Process..

[49]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[50]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[51]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART II-EFFICIENT DESIGN AND APPLICATIONS , 1993 .

[52]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[53]  Wayne Lawton,et al.  Characterization of compactly supported refinable splines , 1995, Adv. Comput. Math..

[54]  Ramesh C. Jain,et al.  Pulse and staircase edge models , 1986, Comput. Vis. Graph. Image Process..

[55]  Shuichi Itahashi,et al.  Window functions represented by B-spline functions , 1989, IEEE Trans. Acoust. Speech Signal Process..

[56]  Yu-Ping Wang,et al.  Multiscale curvature-based shape representation using B-spline wavelets , 1999, IEEE Trans. Image Process..

[57]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART I-THEORY , 1993 .

[58]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..