Kind of entanglement that speeds up quantum evolution

The "speed" of unitary quantum evolution was recently shown to be connected to entanglement in multipartite quantum systems. Here, we discuss a tighter version of the Mandelstam-Tamm uncertainty relation that depends on the Fisher information. The passage time is estimated by a lower bound that depends inversely proportional to the square root of the Fisher information. This leads to a better understanding of the origin of a fast quantum time evolution of entangled states.

[1]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[2]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[3]  G. N. Fleming A unitarity bound on the evolution of nonstationary states , 1973 .

[4]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[5]  A. Plastino,et al.  Entanglement and the lower bounds on the speed of quantum , 2006, quant-ph/0608249.

[6]  The role of entanglement in dynamical evolution , 2002, quant-ph/0206001.

[7]  M. Andrews Bounds to unitary evolution , 2007, 0705.1823.

[8]  H. Chau Tight upper bound of the maximum speed of evolution of a quantum state , 2010, 1003.0726.

[9]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  B. Reznik,et al.  Entanglement and the Speed of Evolution in Mixed States , 2008, 0806.2456.

[11]  Dorje C. Brody Elementary derivation for passage times , 2003 .

[12]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[13]  W. Wootters Statistical distance and Hilbert space , 1981 .

[14]  Armin Uhlmann,et al.  An energy dispersion estimate , 1992 .

[15]  Connection between entanglement and the speed of quantum evolution (5 pages) , 2005, quant-ph/0507030.

[16]  A. Plastino,et al.  Multiqubit systems: highly entangled states and entanglement distribution , 2007, 0803.3979.

[17]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[18]  Claudia Zander,et al.  Entanglement and the speed of evolution of multi-partite quantum systems , 2007 .

[19]  Armin Uhlmann,et al.  Parallel transport and “quantum holonomy” along density operators , 1986 .

[20]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[21]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[22]  C. Zander,et al.  Speed of quantum evolution of entangled two qubits states: Local vs. global evolution , 2008 .

[23]  Fleming's bound for the decay of mixed states , 2008, 0804.4618.

[24]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[25]  A. Plastino,et al.  Two particles in a double well: illustrating the connection between entanglement and the speed of quantum evolution , 2006 .