Core structures and planar faults associated with <111> screw superdislocations in B2 alloys

[1]  J. Eckert,et al.  Anisotropic elastic properties and phase stability of B2 and B19 CuZr structures under hydrostatic pressure , 2018, Intermetallics.

[2]  Hao Wu,et al.  Molecular Dynamics Simulation of Tensile Deformation and Fracture of γ-TiAl with and without Surface Defects , 2016 .

[3]  Weiguo Li,et al.  First principle study on the temperature dependent elastic constants, anisotropy, generalized stacking fault energy and dislocation core of NiAl and FeAl ☆ , 2015 .

[4]  R. Stoller,et al.  The effect of twist angle on anisotropic mobility of {1 1 0} hexagonal dislocation networks in α-iron , 2012 .

[5]  V. Vítek,et al.  Why is the slip direction different in different B2 alloys , 2012 .

[6]  Chong-yu Wang,et al.  Magnetism-driven dislocation dissociation, cross slip, and mobility in NiAl , 2010 .

[7]  V. Vítek,et al.  Why is the slip direction in CuZn and FeAl different than in CoTi , 2010 .

[8]  K. Ho,et al.  Core properties of dislocations in YCu and YAg B2 intermetallic compounds , 2010 .

[9]  S. Kabra,et al.  In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg , 2009 .

[10]  C. Domain,et al.  Simulation of screw dislocation motion in iron by molecular dynamics simulations. , 2005, Physical review letters.

[11]  G. Schoeck The Peierls model: Progress and limitations , 2005 .

[12]  Seungwu Han,et al.  Effect of Fe segregation on the migration of a non-symmetric ∑5 tilt grain boundary in Al , 2005 .

[13]  T. Lograsso,et al.  Tensile properties of magnetostrictive iron–gallium alloys , 2004 .

[14]  David G. Pettifor,et al.  Bond-order potential for molybdenum: Application to dislocation behavior , 2004 .

[15]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[16]  G. Schoeck The core structure of dissociated dislocations in NiAl , 2001 .

[17]  Y. Sun Characteristics of ⟨111⟩ slip in a NiAl [001] single crystal , 2000 .

[18]  Arias,et al.  Ab initio study of screw dislocations in Mo and ta: A new picture of plasticity in bcc transition metals , 1999, Physical review letters.

[19]  Duan Su-qing,et al.  FIRST-PRINCIPLES CALCULATION OF VIBRATIONAL ENTROPY FOR FE-AL COMPOUNDS , 1998 .

[20]  M. Yoo,et al.  Slip band propagation and slip vector transition in B2 FeAl single crystals , 1998 .

[21]  V. Vítek,et al.  Core properties and motion of dislocations in NiAl , 1998 .

[22]  D. Farkas,et al.  Shear faults and dislocation core structure simulations in B2 FeAl , 1997 .

[23]  Y. Sun Stability of APB-dissociated 〈111〉 screw superdislocations in B2-ordered structures , 1995 .

[24]  G. Dirras,et al.  Weak-beam study of the dislocation microstructure of β-CuZn deformed in the temperature domain of the plastic anomaly , 1992 .

[25]  V. Vítek Structure of dislocation cores in metallic materials and its impact on their plastic behaviour , 1992 .

[26]  P. Veyssiére,et al.  Weak-beam study of superlattice dislocations in nial , 1992 .

[27]  R. C. Crawford,et al.  Antiphase boundary energies in iron-aluminium alloys , 1977 .

[28]  T. Yamagata,et al.  Deformation behavior of FeAl single crystals , 1973 .

[29]  N. J. Olson,et al.  Cross Slip of Superlattice Dislocations , 1973, May 16.

[30]  D. Cockayne,et al.  The weak-beam technique applied to superlattice dislocations in an iron—aluminium alloy , 1970 .

[31]  D. K. Bowen,et al.  The core structure of ½(111) screw dislocations in b.c.c. crystals , 1970 .

[32]  V. Vítek,et al.  Intrinsic stacking faults in body-centred cubic crystals , 1968 .

[33]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .