MHD-RLC discharge model and the efficiency characteristics of plasma synthetic jet actuator

Major factors affecting efficiency of plasma synthetic jet actuator (PSJA) are analyzed based on a new discharge model in the present paper. The model couples the magnetohydrodynamics (MHD) equations with the resistor–inductor–capacitor (RLC) equations, and is able to resolve the time-dependent voltage fall on the sheath region and arc region, which is critical in analyzing energy loss in the heating process. This model is integrated into the commercial CFD software by a two-equation method. Results show that in a typical capacitive discharge at microsecond scale, the maximum energy loss is the sheath energy loss, which accounts for nearly half of the discharge energy, while the radiation loss is less than 5%. The discharge time is an important parameter for the PSJA efficiency. A short discharge time less than 1 μs will effectively reduce the sheath energy loss, while a longer discharge time will decrease the thermodynamic efficiency.

[1]  Joachim V. R. Heberlein,et al.  Analysis of the arc-cathode interaction of free-burning arcs , 1994 .

[2]  Jun Li,et al.  Influence of positive slopes on ultrafast heating in an atmospheric nanosecond-pulsed plasma synthetic jet , 2014 .

[3]  Song Huimin,et al.  Influence of geometrical parameters on performance of plasma synthetic jet actuator , 2016 .

[4]  Gu Xu,et al.  Three-Dimensional Modeling of the Plasma Arc in Arc Welding , 2008 .

[5]  M. Capitelli,et al.  Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range , 2008 .

[6]  L. Raja,et al.  Control of a Shock/Boundary-Layer Interaction by Using a Pulsed-Plasma Jet Actuator , 2012 .

[7]  M. Hertel,et al.  Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX , 2011 .

[8]  Farrukh S. Alvi,et al.  SparkJet characterizations in quiescent and supersonic flowfields , 2014 .

[9]  Antoine Belinger,et al.  Plasma Synthetic Jet for flow control , 2010 .

[10]  Jun Chen,et al.  Single-Pulse Performance of the SparkJet Flow Control Actuator , 2005 .

[11]  Václav Tesař,et al.  New Fluidic-Oscillator Concept for Flow-Separation Control , 2013 .

[12]  Y. Yokomizu,et al.  Anode-fall and cathode-fall voltages of air arc in atmosphere between silver electrodes , 2003 .

[13]  Kenneth R. Grossman,et al.  PERFORMANCE CHARACTERISTICS OF THE SPARKJET FLOW CONTROL ACTUATOR , 2004 .

[14]  Lanchao Lin,et al.  Numerical Study of High-Intensity Free-Burning Arc , 1998 .

[15]  Luc Boussemaere,et al.  Marangoni convection in evaporating meniscus with changing contact angle , 2014 .

[17]  Shaofeng Guo,et al.  Effects of Nozzle Length and Process Parameters on Highly Constricted Oxygen Plasma Cutting Arc , 2008 .

[18]  Cheng Zhang,et al.  Time behaviour of discharge current in case of nanosecond-pulse surface dielectric barrier discharge , 2013 .

[19]  Farrukh S. Alvi,et al.  SparkJet Actuator Characterization in Supersonic Crossflow , 2012 .

[20]  David Van Wie,et al.  Computational Assessment of the SparkJet Flow Control Actuator , 2003 .

[21]  L. Raja,et al.  Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator , 2012 .

[23]  Daniel Simon,et al.  Enabling High-Fidelity Modeling of a High-Speed Flow Control Actuator Array , 2006 .

[24]  Trent M. Taylor,et al.  High-Fidelity Modeling of Micro-Scale Flow-Control Devices with Applications to the Macro-Scale Environment , 2008 .

[25]  Fei Yang,et al.  Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device , 2007 .

[26]  Doyle Knight,et al.  Plasma Jet for Flight Control , 2012 .

[27]  A. Gleizes,et al.  Net emission coefficient of air thermal plasmas , 2002 .

[28]  Pierre Freton,et al.  Comparison between a two- and a three-dimensional arc plasma configuration , 2000 .

[29]  Yang Wang,et al.  Electrical Characteristics in Surface Dielectric Barrier Discharge Driven by Microsecond Pulses , 2016, IEEE Transactions on Plasma Science.

[30]  Shaofeng Guo,et al.  Comparative study of turbulence models on highly constricted plasma cutting arc , 2009 .

[31]  Kenneth R. Grossman,et al.  CHARACTERIZATION OF SPARKJET ACTUATORS FOR FLOW CONTROL , 2004 .

[32]  D. Knight,et al.  Novel Technique to Determine SparkJet Efficiency , 2015 .

[33]  G. Dufour,et al.  Physics and models for plasma synthetic jets , 2013 .

[34]  B. Cybyk,et al.  Experimental Estimation of SparkJet Efficiency , 2011 .

[35]  Edl Schamiloglu,et al.  Experimental study of Q-V Lissajous figures in nanosecond-pulse surface discharges , 2013, IEEE Transactions on Dielectrics and Electrical Insulation.

[36]  J. Cambronne,et al.  Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator , 2011 .

[37]  Zhibo Zhang,et al.  Influence of the discharge location on the performance of a three-electrode plasma synthetic jet actuator , 2015 .

[38]  U. Saha,et al.  Numerical Investigations on Flow Control over Blended-Wing-Body Transonic Aircraft Using Synthetic-Jet Actuators , 2012 .

[39]  Václav Tesař,et al.  Configurations of fluidic actuators for generating hybrid-synthetic jets , 2007 .

[40]  Václav Tesař Measuring unsteady axial velocity of fibres and threads , 2009 .

[41]  G. Casalis,et al.  Transient ejection phase modeling of a Plasma Synthetic Jet actuator , 2014 .

[42]  Václav Tesař,et al.  Experimental investigation of a fluidic actuator generating hybrid-synthetic jets , 2007 .