The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the halo occupation distribution model for emission line galaxies

We study the modelling of the Halo Occupation Distribution (HOD) for the eBOSS DR16 Emission Line Galaxies (ELGs). Motivated by previous theoretical and observational studies, we consider different physical effects that can change how ELGs populate haloes. We explore the shape of the average HOD, the fraction of satellite galaxies, their probability distribution function (PDF), and their density and velocity profiles. Our baseline HOD shape was fitted to a semi-analytical model of galaxy formation and evolution, with a decaying occupation of central ELGs at high halo masses. We consider Poisson and sub/super-Poissonian PDFs for satellite assignment. We model both NFW and particle profiles for satellite positions, also allowing for decreased concentrations. We model velocities with the virial theorem and particle velocity distributions. Additionally, we introduce a velocity bias and a net infall velocity. We study how these choices impact the clustering statistics while keeping the number density and bias fixed to that from eBOSS ELGs. The projected correlation function, $w_p$, captures most of the effects from the PDF and satellites profile. The quadrupole, $\xi_2$, captures most of the effects coming from the velocity profile. We find that the impact of the mean HOD shape is subdominant relative to the rest of choices. We fit the clustering of the eBOSS DR16 ELG data under different combinations of the above assumptions. The catalogues presented here have been analysed in companion papers, showing that eBOSS RSD+BAO measurements are insensitive to the details of galaxy physics considered here. These catalogues are made publicly available.

[1]  W. Percival,et al.  The completed SDSS-IV extended baryon oscillation spectroscopic survey: growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the emission-line galaxy sample , 2020, 2007.09009.

[2]  A. Myers,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for the quasar sample , 2020, 2007.09003.

[3]  A. Myers,et al.  The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations with Lyα Forests , 2020, The Astrophysical Journal.

[4]  J. Brinkmann,et al.  The completed SDSS-IV extended baryon oscillation spectroscopic survey: pairwise-inverse probability and angular correction for fibre collisions in clustering measurements , 2020, 2007.09005.

[5]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Sixteenth Data Release , 2020, The Astrophysical Journal Supplement Series.

[6]  W. Percival,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: GLAM-QPM mock galaxy catalogues for the emission line galaxy sample , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  A. Myers,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power spectrum of the quasar sample between redshift 0.8 and 2.2 , 2020, Monthly Notices of the Royal Astronomical Society.

[8]  J. Brinkmann,et al.  The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1 , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  A. Myers,et al.  The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale structure catalogues for cosmological analysis , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  C. Baugh,et al.  Do model emission line galaxies live in filaments at z ∼ 1? , 2020, 2001.06560.

[11]  S. White,et al.  Universal structure of dark matter haloes over a mass range of 20 orders of magnitude , 2019, Nature.

[12]  L. Garrison,et al.  corrfunc – a suite of blazing fast correlation functions on the CPU , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  J. Peacock,et al.  Multitracer extension of the halo model: probing quenching and conformity in eBOSS , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  J. Comparat,et al.  [O ii] emitters in MultiDark-Galaxies and DEEP2 , 2019, 1908.05626.

[15]  C. Baugh,et al.  Extensions to the halo occupation distribution model for more accurate clustering predictions , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  J. Tinker,et al.  Probing Galaxy assembly bias in BOSS galaxies using void probabilities , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  Hal Finkel,et al.  The Outer Rim Simulation: A Path to Many-core Supercomputers , 2019, The Astrophysical Journal Supplement Series.

[18]  S. Brough,et al.  Galaxy And Mass Assembly (GAMA): The sSFR-M* relation part I – σsSFR-M* as a function of sample, SFR indicator and environment , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  D. Schneider,et al.  Evolution of Star-forming Galaxies from z = 0.7 to 1.2 with eBOSS Emission-line Galaxies , 2018, The Astrophysical Journal.

[20]  P. Best,et al.  Dissecting the roles of mass and environment quenching in galaxy evolution with EAGLE , 2018, 1806.11120.

[21]  V. Morozov,et al.  Halo Profiles and the Concentration–Mass Relation for a ΛCDM Universe , 2018, 1804.10199.

[22]  Hong Guo,et al.  The Incomplete Conditional Stellar Mass Function: Unveiling the Stellar Mass Functions of Galaxies at 0.1 < Z < 0.8 from BOSS Observations , 2018, 1804.01993.

[23]  A. I. Salvador,et al.  Dark Energy Survey Year-1 results: galaxy mock catalogues for BAO , 2017, Monthly Notices of the Royal Astronomical Society.

[24]  Yu Feng,et al.  nbodykit: An Open-source, Massively Parallel Toolkit for Large-scale Structure , 2017, The Astronomical Journal.

[25]  S. Arnouts,et al.  Galaxy evolution in the metric of the cosmic web , 2017, 1710.02676.

[26]  Durham,et al.  The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5 , 2017, 1708.07628.

[27]  Á. Orsi,et al.  The impact of galaxy formation on satellite kinematics and redshift-space distortions , 2017, 1708.00956.

[28]  C. Baugh,et al.  The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos , 2017, 1706.07871.

[29]  D. Wake,et al.  The H α luminosity-dependent clustering of star-forming galaxies from z ∼ 0.8 to ∼2.2 with HiZELS. , 2017, 1704.05472.

[30]  W. Percival,et al.  The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: final Emission Line Galaxy Target Selection , 2017, 1704.00338.

[31]  V. Gonzalez-Perez,et al.  Galactic conformity measured in semi-analytic models , 2017, 1703.10175.

[32]  W. Percival,et al.  Unbiased clustering estimation in the presence of missing observations , 2017, 1703.02070.

[33]  W. Percival,et al.  Using angular pair upweighting to improve 3D clustering measurements , 2017, 1703.02071.

[34]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[35]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[36]  Brigitta Sipocz,et al.  Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools , 2016, 1606.04106.

[37]  M. Crocce,et al.  Accurate estimators of correlation functions in Fourier space , 2015, 1512.07295.

[38]  Erik Tollerud,et al.  Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.

[39]  C. Genovese,et al.  Detecting Effects of Filaments on Galaxy Properties in the Sloan Digital Sky Survey III , 2015, 1509.06376.

[40]  D. Gerdes,et al.  SDSS-IV eBOSS emission-line galaxy pilot survey , 2015, 1509.05045.

[41]  W. M. Wood-Vasey,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.

[42]  D. Schneider,et al.  Clustering properties of g-selected galaxies at z similar to 0.8 , 2015, 1507.04356.

[43]  W. Percival,et al.  The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant , 2015, 1505.01797.

[44]  K. Glazebrook,et al.  The Subaru FMOS Galaxy Redshift Survey (FastSound). II. The Emission Line Catalog and Properties of Emission Line Galaxies , 2015, 1504.05592.

[45]  F. Prada,et al.  MultiDark simulations: the story of dark matter halo concentrations and density profiles , 2014, 1411.4001.

[46]  F. Castander,et al.  An algorithm to build mock galaxy catalogues using MICE simulations , 2014, 1411.3286.

[47]  Hal Finkel,et al.  THE Q CONTINUUM SIMULATION: HARNESSING THE POWER OF GPU ACCELERATED SUPERCOMPUTERS , 2014, 1411.3396.

[48]  I. Smail,et al.  COSMIC WEB AND STAR FORMATION ACTIVITY IN GALAXIES AT z ∼ 1 , 2014, 1409.7695.

[49]  Andrew P. Hearin,et al.  Beyond halo mass: galactic conformity as a smoking gun of central galaxy assembly bias , 2014, 1404.6524.

[50]  C. Baugh,et al.  How robust are predictions of galaxy clustering , 2013, 1301.3497.

[51]  G. Kauffmann,et al.  A Re-examination of Galactic Conformity and a Comparison with Semi-analytic Models of Galaxy Formation , 2012, 1209.3306.

[52]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[53]  F. Bernardeau,et al.  Direct and fast calculation of regularized cosmological power spectrum at two-loop order , 2012, 1208.1191.

[54]  A. Ealet,et al.  Investigating emission-line galaxy surveys with the Sloan Digital Sky Survey infrastructure , 2012, 1207.4321.

[55]  C. Baugh,et al.  The clustering of Hα emitters at z = 2.23 from HiZELS , 2012 .

[56]  S. Saito,et al.  Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.

[57]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[58]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[59]  S. White,et al.  The redshift dependence of the structure of massive Λ cold dark matter haloes , 2007, 0711.0746.

[60]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[61]  E. Linder Cosmic growth history and expansion history , 2005, astro-ph/0507263.

[62]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[63]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[64]  Joachim Stadel,et al.  Velocity and spatial biases in cold dark matter subhalo distributions , 2004, astro-ph/0402160.

[65]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[66]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[67]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[68]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[69]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[70]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[71]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[72]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[73]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[74]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[75]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[76]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[77]  J. C. Jackson A Critique of Rees's Theory of Primordial Gravitational Radiation , 1972 .