High power aqueous hybrid asymmetric supercapacitor based on zero-dimensional ZnS nanoparticles with two-dimensional nanoflakes CuSe2 nanostructures

[1]  W. U. Arifeen,et al.  Synthesis and Characterization of Ni Nanoparticles via the Microemulsion Technique and Its Applications for Energy Storage Devices , 2022, Materials.

[2]  R. Hussain,et al.  CdO nanocubes decorated on rGO sheets as novel high conductivity positive electrode material for hybrid supercapacitor , 2022, Journal of Alloys and Compounds.

[3]  Hongying Hou,et al.  Copper sulfide nanoparticles on titanium dioxide (TiO2) nanoflakes: A new hybrid asymmetrical Faradaic supercapacitors with high energy density and superior lifespan , 2022, Journal of Energy Storage.

[4]  Hongying Hou,et al.  A new CuO/TiO2 nanocomposite: An emerging and high energy efficient electrode material for aqueous asymmetric supercapacitors , 2022, Journal of Energy Storage.

[5]  Wen Lu,et al.  A novel high-performance all-solid-state asymmetric supercapacitor based on CuSe nanoflakes wrapped on vertically aligned TiO2 nanoplates nanocomposite synthesized via a wet-chemical method , 2022, Journal of Energy Storage.

[6]  K. Hayat,et al.  Development of 1.6 V Hybrid Supercapacitor Based on ZnO Nanorods/MnO2 nanowires for Next-Generation Electrochemical Energy Storage , 2022, Journal of Electroanalytical Chemistry.

[7]  S. Bibi,et al.  A new ZnO-ZnS-CdS heterostructure on Ni substrate: A binder-free electrode for advanced asymmetric supercapacitors with improved performance , 2022, Electrochimica Acta.

[8]  Hongying Hou,et al.  Hydrothermal Synthesis of ZnO@ZnS heterostructure on Ni foam: A Binder Free Electrode for High power and Stable Hybrid Supercapacitors , 2022, Materials Letters.

[9]  S. Batool,et al.  Heterostructured bimetallic–sulfide@layered Ti3C2T –MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitors , 2022, Nano Energy.

[10]  M. Javed,et al.  Facile synthesis of hierarchical ZnS@FeSe2 nanostructures as new energy-efficient cathode material for advanced asymmetric supercapacitors , 2022, Journal of Science: Advanced Materials and Devices.

[11]  S. Khan,et al.  Nitrogen and Sulfur Co-doped Two-Dimensional Highly Porous Carbon Nanosheets for High-Performance Lithium–Sulfur Batteries , 2022, Energy & Fuels.

[12]  A. Iqbal,et al.  Low-temperature synthesis of 3D copper selenide micro-flowers for high-performance pseudocapacitors , 2022, Materials Letters.

[13]  Hongying Hou,et al.  A Novel TiO2/CuSe Based Nanocomposite for High-Voltage (2.2 V) Asymmetric Supercapacitors , 2022, Journal of Science: Advanced Materials and Devices.

[14]  Seung Gi Seo,et al.  Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors , 2022, Journal of Materials Science & Technology.

[15]  Wen Lu,et al.  Fabrication of 1.6V hybrid supercapacitor developed using MnSe2/rGO positive electrode and phosphine based covalent organic frameworks as a negative electrode enables superb stability up to 28,000 cycles , 2021, Journal of Energy Storage.

[16]  Wen Lu,et al.  Regulating high specific capacitance NCS/α-MnO2 cathode and a wide potential window α-Fe2O3/rGO anode for the construction of 2.7 V for high performance aqueous asymmetric supercapacitors , 2021, Journal of Energy Storage.

[17]  Wen Lu,et al.  Recent trends in transition metal diselenides (XSe2: X = Ni, Mn, Co) and their composites for high energy faradic supercapacitors , 2021, Journal of Energy Storage.

[18]  S. Batool,et al.  Free-standing 3D Co3O4@NF micro-flowers composed of porous ultra-long nanowires as an advanced cathode material for supercapacitor , 2021, Current Applied Physics.

[19]  Yongpeng Ma,et al.  Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors , 2021, Advanced Composites and Hybrid Materials.

[20]  Wen Lu,et al.  Honeycomb‐based heterostructures: An emerging platform for advanced energy applications: A review on energy systems , 2021, Electrochemical Science Advances.

[21]  Wen Lu,et al.  A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors , 2021 .

[22]  Wen Lu,et al.  Research progress in transition metal chalcogenide based anodes for K-ion hybrid capacitor applications: a mini-review , 2021, RSC advances.

[23]  M. S. Reddy,et al.  Photoluminescence and hydrogen evolution properties of ZnS:Eu quantum dots , 2021 .

[24]  Wen Lu,et al.  Covalent organic frameworks based nanomaterials: Design, synthesis, and current status for supercapacitor applications: A review , 2021, Journal of Energy Storage.

[25]  Xin Zhao,et al.  Covalent Organic Framework Templated Ordered Nanoporous C60 as Stable Energy Efficient Supercapacitor Electrode Material , 2021 .

[26]  M. Sajjad Recent Advances in SiO2 Based Composite Electrodes for Supercapacitor Applications , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[27]  Li Qiu,et al.  Phosphine-Based Porous Organic Polymer/rGO Aerogel Composites for High-Performance Asymmetric Supercapacitor , 2021 .

[28]  Muhammad Imran,et al.  CuCo2O4 nanoparticles wrapped in a rGO aerogel composite as an anode for a fast and stable Li-ion capacitor with ultra-high specific energy , 2021, New Journal of Chemistry.

[29]  S. Shinde,et al.  Electrochemically Synthesized Nanoflowers to Nanosphere-Like NiCuSe2 Thin Films for Efficient Supercapacitor Application , 2020, Metals.

[30]  Do Van Lam,et al.  Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. , 2020, Nanoscale.

[31]  J. Shim,et al.  Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications , 2020 .

[32]  W. Mai,et al.  Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates , 2020 .

[33]  Hyun‐Seok Kim,et al.  Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion , 2020 .

[34]  S. Vinoth,et al.  CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor. , 2020, Journal of colloid and interface science.

[35]  Seung Jun Lee,et al.  Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage , 2020 .

[36]  Han-Yi Chen,et al.  Reduced CoNi2S4 nanosheets decorated by sulfur vacancies with enhanced electrochemical performance for asymmetric supercapacitors , 2020, Science China Materials.

[37]  N. Kim,et al.  Advanced Cu0.5Co0.5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors , 2020 .

[38]  Yang Ren,et al.  Influence of Stirring Time on the Electrochemical Properties of NiCo 2 S 4 Hexagonal Plates and NiCo−OH Nanoparticles as High‐Performance Pseudocapacitor Electrode Materials , 2020 .

[39]  Y. Li,et al.  ZnS nanoparticles as the electrode materials for high-performance supercapacitors , 2019 .

[40]  Kalim Deshmukh,et al.  Hydrothermal synthesis of ZnWO4–MnO2 nanopowder doped with carbon black nanoparticles for high-performance supercapacitor applications , 2019, Journal of Materials Science: Materials in Electronics.

[41]  A. Iqbal,et al.  NiCo2S4 nanosheet grafted SiO2@C core-shelled spheres as a novel electrode for high performance supercapacitors , 2019, Nanotechnology.

[42]  Jihye Lee,et al.  Electrochemical behavior of boron-doped mesoporous graphene depending on its boron configuration , 2019, Applied Surface Science.

[43]  T. Maiyalagan,et al.  Recent Progress in Ruthenium Oxide‐Based Composites for Supercapacitor Applications , 2019, ChemElectroChem.

[44]  V. Thangadurai,et al.  Electrolyte selection for supercapacitive devices: a critical review , 2019, Nanoscale advances.

[45]  S. Haigh,et al.  3D Printing of Freestanding MXene Architectures for Current‐Collector‐Free Supercapacitors , 2019, Advanced materials.

[46]  Yeonwoong Jung,et al.  Recent trends in transition metal dichalcogenide based supercapacitor electrodes , 2019, Nanoscale Horizons.

[47]  M. Beidaghi,et al.  Layer-by-layer self-assembly of pillared two-dimensional multilayers , 2019, Nature Communications.

[48]  Jae Hun Choi,et al.  Synthesis Process of CoSeO3 Microspheres for Unordinary Li-ion Storage Performances and Mechanism of Their Conversion Reaction with Li ions. , 2019, Small.

[49]  Yue Ma,et al.  Attaining a high energy density of 106 Wh kg−1 for aqueous supercapacitor based on VS4/rGO/CoS2@Co electrode , 2019, Chemical Engineering Journal.

[50]  A. Balducci,et al.  Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications , 2019, Advanced Energy Materials.

[51]  H. Pang,et al.  Applications of MxSey (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion , 2019, Nano-micro letters.

[52]  K. Ho,et al.  Transition-Metal-Doped Molybdenum Diselenides with Defects and Abundant Active Sites for Efficient Performances of Enzymatic Biofuel Cell and Supercapacitor Applications. , 2019, ACS Applied Materials and Interfaces.

[53]  S. Ghosh,et al.  Phase-pure VO2 nanoporous structure for binder-free supercapacitor performances , 2019, Scientific Reports.

[54]  Poonam,et al.  Review of supercapacitors: Materials and devices , 2019, Journal of Energy Storage.

[55]  Ping Yang,et al.  Synthesis of Micro/Nano-Flower NiX Co−P−O for High-Performance Electrochemical Supercapacitors , 2019, ChemElectroChem.

[56]  W. Mai,et al.  An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra , 2019, Journal of Materials Chemistry A.

[57]  Y. Kumar,et al.  Background, fundamental understanding and progress in electrochemical capacitors , 2019, Journal of Solid State Electrochemistry.

[58]  John Wang,et al.  One‐dimensional and two‐dimensional synergized nanostructures for high‐performing energy storage and conversion , 2019, InfoMat.

[59]  K. Cho,et al.  A simple ultrasonic-synthetic route of Cu2Se-graphene-TiO2 ternary composites for carbon dioxide conversion processes , 2018, Fullerenes, Nanotubes and Carbon Nanostructures.

[60]  Hyun‐Seok Kim,et al.  Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors – A brief review , 2018, Journal of Industrial and Engineering Chemistry.

[61]  W. Fei,et al.  Core-branched CoSe2/Ni0.85Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors , 2018 .

[62]  Zeyi Wu,et al.  Fractal (NixCo1−x)9Se8 Nanodendrite Arrays with Highly Exposed ( 011¯ ) Surface for Wearable, All‐Solid‐State Supercapacitor , 2018, Advanced Energy Materials.

[63]  N. Kim,et al.  Hierarchical nanohoneycomb-like CoMoO4–MnO2 core–shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance , 2018 .

[64]  A. U. H. S. Rana,et al.  Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review , 2018, Nanomaterials.

[65]  C. Li,et al.  Hierarchical Zn–Co–S Nanowires as Advanced Electrodes for All Solid State Asymmetric Supercapacitors , 2018 .

[66]  P. Chu,et al.  Hierarchical CoMoO4@Co3O4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors , 2017 .

[67]  Chenchen Ji,et al.  Urchin-like NiCo2O4 hollow microspheres and FeSe2 micro-snowflakes for flexible solid-state asymmetric supercapacitors , 2017 .

[68]  Jiaqiang Huang,et al.  Heterogeneous, mesoporous NiCo2O4–MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies , 2017 .

[69]  L. Cavalcante,et al.  Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications , 2017, Journal of Solid State Electrochemistry.

[70]  K. Krishnamoorthy,et al.  Hierarchical copper selenide nanoneedles grown on copper foil as a binder free electrode for supercapacitors , 2016 .

[71]  Huanhao Xiao,et al.  NiO nanosheet assembles for supercapacitor electrode materials , 2016 .

[72]  Qing Lu,et al.  Synthesis of mesoporous polythiophene/MnO 2 nanocomposite and its enhanced pseudocapacitive properti , 2011 .

[73]  P. Chu,et al.  Raman scattering study of zinc blende and wurtzite ZnS , 2009 .

[74]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.