Reaction-diffusion network for geometric multiscale high speed image processing

In the framework of heavy mid-level processing for high speed imaging, a nonlinear bi-dimensional network is proposed, allowing the implementation of active curve algorithms. Usually this efficient type of algorithm is prohibitive for real-time image processing due to its calculus charge and the inadequate structure for the use of serial or parallel architectures. Another kind of implementation philosophy is proposed here, by considering the active curve generated by a propagation phenomenon inspired from biological modeling. A programmable nonlinear reaction-diffusion system is proposed under front control and technological constraints. Geometric multiscale processing is presented and this opens a discussion about electronic implementation.

[1]  V. Fast,et al.  Role of wavefront curvature in propagation of cardiac impulse. , 1997, Cardiovascular research.

[2]  Barrie Gilbert,et al.  A precise four-quadrant multiplier with subnanosecond response , 1968, IEEE Solid-State Circuits Newsletter.

[3]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[4]  Wanda Krassowska,et al.  Initiation of propagation in a one-dimensional excitable medium , 1997 .

[5]  Massimo Barbaro,et al.  A 100/spl times/100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002 .

[6]  Alwyn C. Scott,et al.  Neuroscience: A Mathematical Primer , 2002 .

[7]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jean-Marie Bilbault,et al.  Experimental Propagation Failure in a Nonlinear Electrical Lattice , 2004, Int. J. Bifurc. Chaos.

[9]  Alwyn C. Scott,et al.  Active and nonlinear wave propagation in electronics , 1970 .

[10]  Ákos Zarándy,et al.  Implementation of binary and gray-scale mathematical morphology on the CNN universal machine , 1996 .

[11]  Patrick Marquié,et al.  Pattern Dynamics in a Nonlinear Electrical Lattice , 2003, Int. J. Bifurc. Chaos.

[12]  A. Scott Encyclopedia of nonlinear science , 2006 .

[13]  Jean-Marie Bilbault,et al.  A Theoretical Approach of the Propagation through Geometrical Constraints in Cardiac Tissue , 2007, Int. J. Bifurc. Chaos.

[14]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[15]  Thomas Erneux,et al.  Propagating waves in discrete bistable reaction-diffusion systems , 1993 .

[16]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[17]  F. Heitger,et al.  A 100×100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002, IEEE J. Solid State Circuits.

[18]  Roman Goldenberg,et al.  Fast Geodesic Active Contours , 1999, Scale-Space.

[19]  Olivier Aubreton,et al.  Retina for pattern matching in standard 0.6-µm complementary metal oxide semiconductor technology , 2004, J. Electronic Imaging.

[20]  Jordi Cosp,et al.  Programmable VLSI cubic-like function implementation , 2006 .

[21]  Kazuo Kyuma,et al.  Artificial retinas — fast, versatile image processors , 1994, Nature.

[22]  James P. Keener,et al.  Mathematical physiology , 1998 .

[23]  Edgar Sanchez-Sinencio,et al.  CMOS transconductance amplifiers, architectures and active filters: a tutorial , 2000 .