The data augmentation algorithm : Theory and methodology
暂无分享,去创建一个
[1] Djc MacKay,et al. Slice sampling - Discussion , 2003 .
[2] Xiao-Li Meng,et al. Seeking efficient data augmentation schemes via conditional and marginal augmentation , 1999 .
[3] J. Hobert,et al. Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression , 2007 .
[4] Sheldon M. Ross,et al. Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.
[5] Jun S. Liu,et al. Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .
[6] J. Hobert,et al. Block Gibbs Sampling for Bayesian Random Effects Models With Improper Priors: Convergence and Regeneration , 2009 .
[7] Galin L. Jones,et al. On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .
[8] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[9] Ming-Hui Chen,et al. Propriety of posterior distribution for dichotomous quantal response models , 2000 .
[10] Adrian F. M. Smith,et al. Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .
[11] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[12] J. Hobert,et al. Geometric Ergodicity of van Dyk and Meng's Algorithm for the Multivariate Student's t Model , 2004 .
[13] J. Hobert,et al. A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms , 2008, 0804.0671.
[14] E. Nummelin. General irreducible Markov chains and non-negative operators: Embedded renewal processes , 1984 .
[15] M. L. Eaton. Group invariance applications in statistics , 1989 .
[16] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[17] J. Rosenthal,et al. Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains , 2006, math/0702412.
[18] Gareth O. Roberts,et al. Markov Chains and De‐initializing Processes , 2001 .
[19] Jun S. Liu,et al. Parameter Expansion for Data Augmentation , 1999 .
[20] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[21] P. Diaconis,et al. Gibbs sampling, exponential families and orthogonal polynomials , 2008, 0808.3852.
[22] C. Robert. Simulation of truncated normal variables , 2009, 0907.4010.
[23] R. Tweedie,et al. Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.
[24] Galin L. Jones,et al. Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.
[25] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[26] Antonietta Mira,et al. Ordering Monte Carlo Markov Chains , 1999 .
[27] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[28] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[29] S. Meyn,et al. Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .
[30] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[31] James P. Hobert,et al. Norm Comparisons for Data Augmentation , 2007 .
[32] Wang,et al. Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.
[33] P. Diaconis,et al. Geometric Bounds for Eigenvalues of Markov Chains , 1991 .
[34] M. Steel,et al. Multivariate Student -t Regression Models : Pitfalls and Inference , 1999 .
[35] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[36] Ruitao Liu,et al. When is Eaton’s Markov chain irreducible? , 2007 .
[37] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.