Introduction to fractional linear systems. Part 2. Discrete-time case
暂无分享,去创建一个
[1] B. Mandelbrot. Fractal Geometry of Nature , 1984 .
[2] A. Janssen. The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .
[3] M. S. Keshner. 1/f noise , 1982, Proceedings of the IEEE.
[4] Unto K. Laine,et al. Splitting the Unit Delay - Tools for fractional delay filter design , 1996 .
[5] Andrzej Tarczynski,et al. Special discrete-time filters having fractional delay , 1998, Signal Process..
[6] Inbar Fijalkow,et al. Fractionally spaced equalizers , 1996, IEEE Signal Process. Mag..
[7] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[8] John R. Treichler,et al. Fractionally spaced equalizers. How long should they really be , 1996 .
[9] J. Machado. Analysis and design of fractional-order digital control systems , 1997 .
[10] Manuel Duarte Ortigueira,et al. Introduction to fractional linear systems. Part 1. Continuous-time case , 2000 .
[11] Mark O'Malley,et al. The zero-order hold equivalent transfer function for a time-delayed process , 1995 .
[12] Unto K. Laine,et al. Splitting the unit delay [FIR/all pass filters design] , 1996, IEEE Signal Process. Mag..
[13] A. van der Ziel,et al. Unified presentation of 1/f noise in electron devices: fundamental 1/f noise sources , 1988, Proc. IEEE.
[14] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .