A Parallel Repetition Theorem for Constant-Round Arthur-Merlin Proofs

We show a parallel-repetition theorem for constant-round Arthur-Merlin Proofs, using an efficient reduction. As a consequence, we show that parallel repetition reduces the soundness-error at an optimal rate (up to a negligible factor) in constant-round public-coin argument systems, and constant-round public-coin proofs of knowledge. The first of these results resolves an open question posed by Bellare, Impagliazzo, and Naor (FOCS’97).

[1]  Oded Goldreich Foundations of Cryptography: Index , 2001 .

[2]  Feng-Hao Liu,et al.  Parallel Repetition Theorems for Interactive Arguments , 2010, TCC.

[3]  Richard E. Overill,et al.  Foundations of Cryptography: Basic Tools , 2002, J. Log. Comput..

[4]  Lance Fortnow,et al.  On the Power of Multi-Prover Interactive Protocols , 1994, Theor. Comput. Sci..

[5]  Hugo Krawczyk,et al.  On the Composition of Zero-Knowledge Proof Systems , 1990, ICALP.

[6]  Ran Canetti,et al.  Hardness Amplification of Weakly Verifiable Puzzles , 2005, TCC.

[7]  Russell Impagliazzo,et al.  Chernoff-Type Direct Product Theorems , 2007, Journal of Cryptology.

[8]  Amos Fiat,et al.  Zero-knowledge proofs of identity , 1987, Journal of Cryptology.

[9]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[10]  Adi Shamir,et al.  Zero Knowledge Proofs of Knowledge in Two Rounds , 1989, CRYPTO.

[11]  Ran Raz,et al.  A parallel repetition theorem , 1995, STOC '95.

[12]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[13]  Uriel Feige,et al.  Two-Prover Protocols - Low Error at Affordable Rates , 2000, SIAM J. Comput..

[14]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[15]  Manuel Blum,et al.  How to Prove a Theorem So No One Else Can Claim It , 2010 .

[16]  Iftach Haitner A Parallel Repetition Theorem for Any Interactive Argument , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Oded Goldreich,et al.  Modern Cryptography, Probabilistic Proofs and Pseudorandomness , 1998, Algorithms and Combinatorics.

[18]  Rafael Pass,et al.  An Efficient Parallel Repetition Theorem , 2010, TCC.

[19]  Krzysztof Pietrzak,et al.  Parallel Repetition of Computationally Sound Protocols Revisited , 2010, Journal of Cryptology.

[20]  Rafael Pass,et al.  On the Composition of Public-Coin Zero-Knowledge Protocols , 2009, CRYPTO.

[21]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[22]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[23]  Hugo Krawczyk,et al.  On the Composition of Zero-Knowledge Proof Systems , 1990, ICALP.

[24]  Andrew C. Lee,et al.  Review of Modern cryptography, probabilistic proofs and pseudorandomness algorithms and combinatorics, vol 17 by Oded Goldreich. Springer Verlag, 1999. , 2003, SIGA.

[25]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[26]  Avi Wigderson,et al.  Multi-prover interactive proofs: how to remove intractability assumptions , 2019, STOC '88.

[27]  Ran Raz A Parallel Repetition Theorem , 1998, SIAM J. Comput..

[28]  Leonid A. Levin,et al.  Security preserving amplification of hardness , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[29]  Vinod Vaikuntanathan,et al.  Adaptive One-Way Functions and Applications , 2008, CRYPTO.

[30]  Grant Schoenebeck,et al.  General Hardness Amplification of Predicates and Puzzles - (Extended Abstract) , 2011, TCC.

[31]  Moni Naor,et al.  Does parallel repetition lower the error in computationally sound protocols? , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[32]  David Chaum,et al.  Minimum Disclosure Proofs of Knowledge , 1988, J. Comput. Syst. Sci..

[33]  Feng-Hao Liu,et al.  Efficient String-Commitment from Weak Bit-Commitment , 2010, ASIACRYPT.

[34]  Charanjit S. Jutla Almost Optimal Bounds for Direct Product Threshold Theorem , 2010, TCC.

[35]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[36]  Rafael Pass,et al.  An efficient parallel repetition theorem for Arthur-Merlin games , 2007, STOC '07.

[37]  Mihir Bellare,et al.  On Defining Proofs of Knowledge , 1992, CRYPTO.

[38]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[39]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[40]  Martin Tompa,et al.  Random self-reducibility and zero knowledge interactive proofs of possession of information , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[41]  David Xiao,et al.  (Nearly) Round-Optimal Black-Box Constructions of Commitments Secure against Selective Opening Attacks , 2011, TCC.

[42]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[43]  Joe Kilian,et al.  On the Concurrent Composition of Zero-Knowledge Proofs , 1999, EUROCRYPT.