Quantum complementarity of microcavity polaritons

The spontaneous and self-stimulated parametric emission from a semiconductor microcavity after resonant pulsed excitation is measured. The emission of the lower polariton branch is resolved in two-dimensional momentum space, using either time-resolved or time-integrated detection. Employing two pump directions, we experimentally probe polariton quantum correlations by exploiting quantum complementarity. Polaritons in two distinct idler-modes interfere if and only if they share the same signal-mode so that "which-way" information cannot be gathered. The experimental results prove the existence of polariton pair correlations that store the "which-way" information.

[1]  W. Langbein Spontaneous parametric scattering of microcavity polaritons in momentum space , 2004 .

[2]  C. Ciuti,et al.  Parametric luminescence of microcavity polaritons , 2000, cond-mat/0008408.

[3]  W. Langbein Energy and momentum broadening of planar microcavity polaritons measured by resonant light scattering , 2004 .

[4]  M. S. Skolnick,et al.  Angle-resonant stimulated polariton amplifier , 2000, Physical review letters.

[5]  L. Mandel,et al.  Induced coherence and indistinguishability in optical interference. , 1991, Physical review letters.

[6]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[7]  Tassone,et al.  Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures. , 1996, Physical review. B, Condensed matter.

[8]  J. R. Jensen,et al.  Direct evidence of reduced dynamic scattering in the lower polariton of a semiconductor microcavity , 2000 .

[9]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[10]  Herzog,et al.  Complementarity and the quantum eraser. , 1995, Physical review letters.

[11]  F. Bœuf,et al.  Stimulation of Polariton Photoluminescence in Semiconductor Microcavity , 1998 .

[12]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[13]  M. S. Skolnick,et al.  Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities , 2000, Physical review letters.

[14]  J. Bloch,et al.  High-temperature ultrafast polariton parametric amplification in semiconductor microcavities , 2001, Nature.

[15]  Stanley,et al.  Nonlinear emission of semiconductor microcavities in the strong coupling regime , 2000, Physical review letters.

[16]  Stephan W Koch,et al.  Nonlinear optics of normal-mode-coupling semiconductor microcavities , 1999 .

[17]  Shih,et al.  Delayed "Choice" quantum eraser , 1999, Physical review letters.

[18]  Quantum Complementarity of Microcavity Polaritons , 2004, cond-mat/0411314.

[19]  L. Mandel,et al.  Quantum effects in one-photon and two-photon interference , 1999 .

[20]  J. R. Jensen,et al.  Stimulated secondary emission from semiconductor microcavities. , 2001, Physical review letters.

[21]  Quantum effects in one-photon and two-photon interference , 1999 .

[22]  W. Langbein Polariton correlation in microcavities produced by parametric scattering , 2005 .

[23]  J. R. Jensen,et al.  Ultranarrow polaritons in a semiconductor microcavity , 2000 .

[24]  J. Bloch,et al.  Microcavity polariton depopulation as evidence for stimulated scattering , 2000 .

[25]  M. S. Skolnick,et al.  Ring Emission and Exciton Pair Scattering in Semiconductor Microcavities , 2002 .

[26]  M. S. Skolnick,et al.  Strong coupling phenomena in quantum microcavity structures , 1998 .

[27]  E. Giacobino,et al.  Twin polaritons in semiconductor microcavities , 2003, cond-mat/0306236.

[28]  C. Ciuti,et al.  Statistics of polaritons in the nonlinear regime , 2003 .