Nested Neuronal Dynamics Orchestrate a Behavioral Hierarchy across Timescales

Summary Classical and modern ethological studies suggest that animal behavior is organized hierarchically across timescales, such that longer-timescale behaviors are composed of specific shorter-timescale actions. Despite progress relating neuronal dynamics to single-timescale behavior, it remains unclear how different timescale dynamics interact to give rise to such higher-order behavioral organization. Here, we show, in the nematode Caenorhabditis elegans, that a behavioral hierarchy spanning three timescales is implemented by nested neuronal dynamics. At the uppermost hierarchical level, slow neuronal population dynamics spanning brain and motor periphery control two faster motor neuron oscillations, toggling them between different activity states and functional roles. At lower hierarchical levels, these faster oscillations are further nested in a manner that enables flexible behavioral control in an otherwise rigid hierarchical framework. Our findings establish nested neuronal activity patterns as a repeated dynamical motif of the C. elegans nervous system, which together implement a controllable hierarchical organization of behavior.

[1]  Nitin Gupta,et al.  Oscillatory integration windows in neurons , 2016, Nature Communications.

[2]  O. Kiehn Development and functional organization of spinal locomotor circuits , 2011, Current Opinion in Neurobiology.

[3]  R. Prevedel,et al.  Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light , 2013, Nature Methods.

[4]  Daniel Ramot,et al.  The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes , 2008, PloS one.

[5]  D. Poeppel,et al.  Cortical Tracking of Hierarchical Linguistic Structures in Connected Speech , 2015, Nature Neuroscience.

[6]  Aravinthan D. T. Samuel,et al.  Dynamic Encoding of Perception, Memory, and Movement in a C. elegans Chemotaxis Circuit , 2014, Neuron.

[7]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  M. Orger,et al.  Structure of the Zebrafish Locomotor Repertoire Revealed with Unsupervised Behavioral Clustering , 2018, Current Biology.

[9]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[10]  Kevin M. Collins,et al.  Postsynaptic ERG Potassium Channels Limit Muscle Excitability to Allow Distinct Egg-Laying Behavior States in Caenorhabditis elegans , 2013, The Journal of Neuroscience.

[11]  Zhaoyang Feng,et al.  The Neural Circuits and Synaptic Mechanisms Underlying Motor Initiation in C. elegans , 2011, Cell.

[12]  Xin Jin,et al.  Shaping action sequences in basal ganglia circuits , 2015, Current Opinion in Neurobiology.

[13]  Carlos D. Brody,et al.  Correlations Without Synchrony , 1999, Neural Computation.

[14]  Nektarios Tavernarakis,et al.  UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. , 1999, Genes & development.

[15]  David J. Anderson,et al.  A Brain Module for Scalable Control of Complex, Multi-motor Threat Displays , 2018, Neuron.

[16]  Hyun-Ho Lim,et al.  A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels , 2018, PLoS biology.

[17]  L. Avery,et al.  The Geometry of Locomotive Behavioral States in C. elegans , 2013, PloS one.

[18]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[19]  Tao Xu,et al.  C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog , 2010, Nature Neuroscience.

[20]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[21]  Michelle D. Po,et al.  Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions , 2018, Proceedings of the National Academy of Sciences.

[22]  C. Fang-Yen,et al.  Food responsiveness regulates episodic behavioral states in Caenorhabditis elegans. , 2017, Journal of neurophysiology.

[23]  A. Gordus,et al.  Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels , 2014, Proceedings of the National Academy of Sciences.

[24]  H. Bringmann,et al.  An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans , 2013, Current Biology.

[25]  P. Sengupta,et al.  Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase , 2002, Neuron.

[26]  H. Evans The Study of Instinct , 1952 .

[27]  Xin Jin,et al.  Basal Ganglia Subcircuits Distinctively Encode the Parsing and Concatenation of Action Sequences , 2014, Nature Neuroscience.

[28]  Mark J Alkema,et al.  Tyramine Functions Independently of Octopamine in the Caenorhabditis elegans Nervous System , 2005, Neuron.

[29]  Zhaoyu Li,et al.  Encoding of Both Analog- and Digital-like Behavioral Outputs by One C. elegans Interneuron , 2014, Cell.

[30]  Aravinthan D. T. Samuel,et al.  Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion , 2012, Neuron.

[31]  Christopher M. Glaze,et al.  Temporal Structure in Zebra Finch Song: Implications for Motor Coding , 2006, The Journal of Neuroscience.

[32]  H. Horvitz,et al.  Ligand-Gated Chloride Channels Are Receptors for Biogenic Amines in C. elegans , 2009, Science.

[33]  Evan Z. Macosko,et al.  Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans , 2013, Cell.

[34]  A. Gomez-Marin,et al.  Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour , 2015, Journal of The Royal Society Interface.

[35]  Rick Chartrand,et al.  Numerical Differentiation of Noisy, Nonsmooth Data , 2011 .

[36]  Andrew M. Leifer,et al.  Monoaminergic Orchestration of Motor Programs in a Complex C. elegans Behavior , 2013, PLoS biology.

[37]  S. Sponberg,et al.  Abdicating power for control: a precision timing strategy to modulate function of flight power muscles , 2012, Proceedings of the Royal Society B: Biological Sciences.

[38]  M. Goulding Circuits controlling vertebrate locomotion: moving in a new direction , 2009, Nature Reviews Neuroscience.

[39]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.

[40]  Uri Alon,et al.  A cellular and regulatory map of the cholinergic nervous system of C. elegans , 2015, eLife.

[41]  O. Hobert,et al.  The neurexin superfamily of Caenorhabditis elegans. , 2011, Gene expression patterns : GEP.

[42]  O. Hobert,et al.  A cellular and regulatory map of the GABAergic nervous system of C. elegans , 2016, bioRxiv.

[43]  S. Lockery,et al.  An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans , 2011, PloS one.

[44]  Steven W. Flavell,et al.  Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit , 2015, Cell.

[45]  M. Zimmer,et al.  Energy Scarcity Promotes a Brain-wide Sleep State Modulated by Insulin Signaling in C. elegans , 2018, Cell reports.

[46]  Wolfgang Maier,et al.  A Neuromedin U Receptor Acts with the Sensory System to Modulate Food Type-Dependent Effects on C. elegans Lifespan , 2010, PLoS biology.

[47]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[48]  Joshua W. Shaevitz,et al.  Predictability and hierarchy in Drosophila behavior , 2016, Proceedings of the National Academy of Sciences.

[49]  William S. Ryu,et al.  An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion , 2011, Neuron.

[50]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[51]  William Rowan,et al.  The Study of Instinct , 1953 .

[52]  E. Soucy,et al.  Cholinergic Sensorimotor Integration Regulates Olfactory Steering , 2017, Neuron.

[53]  Navin Pokala,et al.  Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases , 2009, Neuron.

[54]  Eli J. Cornblath,et al.  Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion , 2017, bioRxiv.

[55]  Steven B Augustine,et al.  A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans , 2016, eLife.

[56]  Laura J. Grundy,et al.  A database of C. elegans behavioral phenotypes , 2013, Nature Methods.

[57]  D. Soll,et al.  Coordination and Modulation of Locomotion Pattern Generators in Drosophila Larvae: Effects of Altered Biogenic Amine Levels by the Tyramine β Hydroxlyase Mutation , 2006, The Journal of Neuroscience.

[58]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[59]  Nikhil Bhatla,et al.  Light and Hydrogen Peroxide Inhibit C. elegans Feeding through Gustatory Receptor Orthologs and Pharyngeal Neurons , 2015, Neuron.

[60]  Hang Lu,et al.  Laterally Orienting C. elegans Using Geometry at Microscale for High-Throughput Visual Screens in Neurodegeneration and Neuronal Development Studies , 2012, PloS one.

[61]  Dezhe Z. Jin,et al.  Support for a synaptic chain model of neuronal sequence generation , 2010, Nature.

[62]  Stephen E. Von Stetina,et al.  UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans. , 2007, Genes & development.

[63]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[64]  M. Hendricks,et al.  Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement , 2012, Nature.

[65]  Mark J. Alkema,et al.  A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs of a Caenorhabditis elegans Escape Response , 2009, Neuron.

[66]  Nachum Ulanovsky,et al.  Nonoscillatory Phase Coding and Synchronization in the Bat Hippocampal Formation , 2018, Cell.

[67]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[68]  Alexandre Hyafil,et al.  Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions , 2015, Trends in Neurosciences.

[69]  Pamela Cosman,et al.  Automated detection and analysis of foraging behavior in Caenorhabditis elegans , 2008, Journal of Neuroscience Methods.

[70]  Manuel Zimmer,et al.  Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans , 2016, eLife.

[71]  Nicole K. Charlie,et al.  Presynaptic UNC-31 (CAPS) Is Required to Activate the Gαs Pathway of the Caenorhabditis elegans Synaptic Signaling Network , 2006, Genetics.

[72]  Mario de Bono,et al.  Decoding a neural circuit controlling global animal state in C. elegans , 2015, eLife.

[73]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[74]  S. Heuvel,et al.  G1/S Inhibitors and the SWI/SNF Complex Control Cell-Cycle Exit during Muscle Differentiation , 2015, Cell.

[75]  Ad Aertsen,et al.  Portraits of communication in neuronal networks , 2018, Nature Reviews Neuroscience.

[76]  Aravinthan D. T. Samuel,et al.  An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans , 2016, eLife.

[77]  M H Dickinson,et al.  Convergent mechanosensory input structures the firing phase of a steering motor neuron in the blowfly, Calliphora. , 1999, Journal of neurophysiology.

[78]  Didier Chatenay,et al.  Molecular and Sensory Basis of a Food Related Two-State Behavior in C. elegans , 2009, PloS one.

[79]  Kyuhyung Kim,et al.  Expression and regulation of an FMRFamide‐related neuropeptide gene family in Caenorhabditis elegans , 2004, The Journal of comparative neurology.

[80]  J. E. Shaw,et al.  Interactions between innexins UNC-7 and UNC-9 mediate electrical synapse specificity in the Caenorhabditis elegans locomotory nervous system , 2009, Neural Development.

[81]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[82]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[83]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[84]  Annika L A Nichols,et al.  A global brain state underlies C. elegans sleep behavior , 2017, Science.

[85]  David Kleinfeld,et al.  Hierarchy of orofacial rhythms revealed through whisking and breathing , 2013, Nature.

[86]  O. Hobert,et al.  A cellular and regulatory map of the GABAergic nervous system of C. elegans , 2016, bioRxiv.

[87]  Ryan P. Adams,et al.  Mapping Sub-Second Structure in Mouse Behavior , 2015, Neuron.

[88]  Mark J Alkema,et al.  Excitatory motor neurons are local oscillators for backward locomotion , 2017, eLife.