A modified figure of merit for pyroelectric energy harvesting

[1]  A. Damodaran,et al.  Improved pyroelectric figures of merit in compositionally graded PbZr1-xTixO3 thin films. , 2013, ACS applied materials & interfaces.

[2]  Chun-Ching Hsiao,et al.  Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique , 2013, Sensors.

[3]  T. A. El-Brolossy,et al.  Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique , 2013 .

[4]  Laurent Pilon,et al.  Pyroelectric waste heat energy harvesting using heat conduction , 2012 .

[5]  Panos G. Datskos,et al.  Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques , 2012, Defense + Commercial Sensing.

[6]  Peter Woias,et al.  A self-sustaining micro thermomechanic-pyroelectric generator , 2011 .

[7]  Qi Zhang,et al.  Solar micro-energy harvesting with pyroelectric effect and wind flow , 2011 .

[8]  P. Woias,et al.  A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[9]  Laurent Pilon,et al.  Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films , 2011 .

[10]  S Priya,et al.  Criterion for material selection in design of bulk piezoelectric energy harvesters , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Yuan He,et al.  Light and thermal energy cell based on carbon nanotube films , 2010 .

[12]  Laurent Pilon,et al.  Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting , 2010, Smart Materials and Structures.

[13]  V. Ferrari,et al.  Thermal energy harvesting through pyroelectricity , 2010 .

[14]  D. Guyomar,et al.  Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Benoit Guiffard,et al.  Electrocaloric and pyroelectric properties of 0.75Pb(Mg1∕3Nb2∕3)O3–0.25PbTiO3 single crystals , 2006 .

[16]  S. Lang Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool , 2005 .

[17]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[18]  E. H. Putley,et al.  A method for evaluating the performance of pyroelectric detectors , 1980 .

[19]  K. F. Young,et al.  Compilation of the Static Dielectric Constant of Inorganic Solids , 1973 .

[20]  J. Cooper A fast-response pyroelectric thermal detector , 1962 .

[21]  G. Uma,et al.  Pyroelectric-Based Solar and Wind Energy Harvesting System , 2014, IEEE Transactions on Sustainable Energy.

[22]  Jayasimha Atulasimha,et al.  Pyroelectric Materials: Scaling of Output Power With Dimensions and Substrate Clamping , 2009 .

[23]  S. Lang,et al.  Pyroelectricity: Fundamentals and applications , 2001 .

[24]  Hari Singh Nalwa,et al.  Handbook of advanced electronic and photonic materials and devices , 2001 .