On the Convergence Rate of a Preconditioned Subspace Eigensolver

Abstract.In this paper we present a proof of convergence for a preconditioned subspace method which shows the dependency of the convergence rate on the preconditioner used. This convergence rate depends only on the condition of the pre-conditioned system $ \kappa _{2}(MA) $ and the relative separation of the first two eigenvalues $ 1-\lambda _{1}/\lambda _{2} $. This means that, for example, multigrid preconditioners can be used to find eigenvalues of elliptic PDE's at a grid-independent rate.

[1]  Gabriel Wittum,et al.  Incomplete Decomposition (ILU) — Algorithms, Theory, and Applications , 1993 .

[2]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[3]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .

[4]  Andrew V. Knyazev,et al.  A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..

[5]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[6]  Suely Oliveira,et al.  A convergence proof of an iterative subspace method for eigenvalues problems , 1997 .

[7]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Kesheng Wu,et al.  Preconditioned techniques for large eigenvalue problems , 1997 .

[10]  L. Borges,et al.  A Parallel Davidson-Type Algorithm for Several Eigenvalues , 1998 .

[11]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[12]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[13]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[14]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..