General construction and topological classification of crystalline flat bands

[1]  Hang Liu,et al.  Orbital design of flat bands in non-line-graph lattices via line-graph wave functions , 2021, Physical Review B.

[2]  C. Felser,et al.  Catalogue of flat-band stoichiometric materials , 2021, Nature.

[3]  Bohm-Jung Yang,et al.  Flat bands with band crossings enforced by symmetry representation , 2021, Physical Review B.

[4]  Barry Bradlyn,et al.  Magnetic topological quantum chemistry , 2020, Nature Communications.

[5]  P. Liljeroth,et al.  Designer flat bands in quasi-one-dimensional atomic lattices , 2020 .

[6]  A. Houck,et al.  Fragile topology in line-graph lattices with two, three, or four gapped flat bands , 2020, Physical Review Research.

[7]  S. Okamoto,et al.  Flat bands in the CoSn-type compounds , 2020 .

[8]  A. Houck,et al.  Spin-Orbit-Induced Topological Flat Bands in Line and Split Graphs of Bipartite Lattices. , 2020, Physical review letters.

[9]  C. Felser,et al.  High-throughput calculations of magnetic topological materials , 2020, Nature.

[10]  P. Dudin,et al.  Observation of flat bands due to band hybridization in the 3d -electron heavy-fermion compound CaCu3Ru4O12 , 2020, 2002.02588.

[11]  B. Bernevig,et al.  Twisted bulk-boundary correspondence of fragile topology , 2019, Science.

[12]  Fang Xie,et al.  Topology-Bounded Superfluid Weight in Twisted Bilayer Graphene. , 2019, Physical review letters.

[13]  B. Bernevig,et al.  All Magic Angles in Twisted Bilayer Graphene are Topological. , 2019, Physical review letters.

[14]  N. Regnault,et al.  Fragile Phases as Affine Monoids: Classification and Material Examples , 2019 .

[15]  A. Vishwanath,et al.  Faithful tight-binding models and fragile topology of magic-angle bilayer graphene , 2018, Physical Review B.

[16]  Alicia J. Kollár,et al.  Hyperbolic lattices in circuit quantum electrodynamics , 2018, Nature.

[17]  A. Vishwanath,et al.  Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene , 2018, Physical Review X.

[18]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[19]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[20]  D. Leykam,et al.  Artificial flat band systems: from lattice models to experiments , 2018, 1801.09378.

[21]  C. Felser,et al.  Topology of Disconnected Elementary Band Representations. , 2017, Physical review letters.

[22]  A. Vishwanath,et al.  Fragile Topology and Wannier Obstructions. , 2017, Physical review letters.

[23]  A. Vishwanath,et al.  Structure and topology of band structures in the 1651 magnetic space groups , 2017, Science Advances.

[24]  C. Felser,et al.  Double crystallographic groups and their representations on the Bilbao Crystallographic Server , 2017, 1706.09272.

[25]  Barry Bradlyn,et al.  Graph theory data for topological quantum chemistry. , 2017, Physical review. E.

[26]  M. I. Aroyo,et al.  Topological quantum chemistry , 2017, Nature.

[27]  A. Vishwanath,et al.  Symmetry-based indicators of band topology in the 230 space groups , 2017, Nature Communications.

[28]  C. Kane,et al.  Topological Classification of Crystalline Insulators through Band Structure Combinatorics , 2016, 1612.02007.

[29]  T. Jacqmin,et al.  Supplemental Material for : " Bosonic Condensation and Disorder-Induced Localization in a Flat Band " , 2015 .

[30]  J. Richter,et al.  Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons , 2015, 1502.02729.

[31]  M. Morigi,et al.  From dia- to paramagnetic orbital susceptibility of massless fermions. , 2013, Physical review letters.

[32]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[33]  Y. Hatsugai,et al.  ZQ topological invariants for Polyacetylene, Kagome and Pyrochlore lattices , 2010, 1009.3792.

[34]  J. Chalker,et al.  Anderson localization in tight-binding models with flat bands , 2010, 1008.3256.

[35]  S. Huber,et al.  Bose condensation in flat bands , 2010, 1007.4640.

[36]  C. Chamon,et al.  Isolated flat bands and spin-1 conical bands in two-dimensional lattices , 2010, 1004.0708.

[37]  L. Balents,et al.  Band touching from real space topology in frustrated hopping models(Topological Aspects of Solid State Physics) , 2008, 0803.3628.

[38]  S. Sarma,et al.  Flat bands and Wigner crystallization in the honeycomb optical lattice. , 2007, Physical review letters.

[39]  S. Nishino,et al.  Inverse Anderson transition caused by flatbands. , 2006, Physical review letters.

[40]  H. Tasaki,et al.  Ferromagnetism in the Hubbard model , 1993, cond-mat/9305026.

[41]  H. Tasaki,et al.  Ferromagnetism in the Hubbard models with degenerate single-electron ground states. , 1992, Physical review letters.

[42]  A. Mielke Exact ground states for the Hubbard model on the Kagome lattice , 1992 .

[43]  A. Mielke Ferromagnetism in the Hubbard model on line graphs and further considerations , 1991 .

[44]  A. Mielke Ferromagnetic ground states for the Hubbard model on line graphs , 1991 .

[45]  S. Trugman Exact results for the U = infinity Hubbard model , 1990 .

[46]  E. Lieb,et al.  Two theorems on the Hubbard model. , 1989, Physical review letters.

[47]  M. Thorpe,et al.  Electronic Properties of an Amorphous Solid. I. A Simple Tight-Binding Theory , 1971 .