Cooperative Asynchronous Multichannel MAC: Design, Analysis, and Implementation

Medium access control (MAC) protocols have been studied under different contexts for decades. In decentralized contexts, transmitter-receiver pairs make independent decisions, which are often suboptimal due to insufficient knowledge about the communication environment. In this paper, we introduce distributed information sharing (DISH), which is a distributed flavor of control-plane cooperation, as a new approach to wireless protocol design. The basic idea is to allow nodes to share control information with each other such that nodes can make more informed decisions in communication. This notion of control-plane cooperation augments the conventional understanding of cooperation, which sits at the data plane as a data relaying mechanism. In a multichannel network, DISH allows neighboring nodes to notify transmitter-receiver pairs of channel conflicts and deaf terminals to prevent collisions and retransmissions. Based on this, we design a single-radio cooperative asynchronous multichannel MAC protocol called CAM-MAC. For illustration and evaluation purposes, we choose a specific set of parameters for CAM-MAC First, our analysis shows that its throughput upper bound is 91 percent of the system bandwidth and our simulations show that it actually achieves a throughput of 96 percent of the upper bound. Second, our analysis shows that CAM-MAC can saturate 15 channels at maximum and our simulations show that it saturates 14.2 channels on average, which indicates that, although CAM-MAC uses a control channel, it does not realistically suffer from control channel bottleneck. Third, we compare CAM-MAC with its noncooperative version called UNCOOP, and observe a throughput ratio of 2.81 and 1.70 in single-hop and multihop networks, respectively. This demonstrates the value of cooperation. Fourth, we compare CAM-MAC with three recent multichannel MAC protocols, MMAC, SSCH, and AMCP, and find that CAM-MAC significantly outperforms all of them. Finally, we implement CAM-MAC and UNCOOP on commercial off-the-shelf hardware and share lessons learned in the implementation. The experimental results confirm the viability of CAM-MAC and the idea of DISH.

[1]  Ian F. Akyildiz,et al.  A survey on wireless multimedia sensor networks , 2007, Comput. Networks.

[2]  Yu-Chee Tseng,et al.  A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks , 2000, Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN 2000.

[3]  Jean C. Walrand,et al.  Practical synchronization techniques for multi-channel MAC , 2006, MobiCom '06.

[4]  Peter J. B. King,et al.  Architectures and Performance of Multichannel Multihop Packet Radio Networks , 1987, IEEE J. Sel. Areas Commun..

[5]  Koen Langendoen,et al.  Link layer measurements in sensor networks , 2004, 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975).

[6]  Elif Uysal-Biyikoglu,et al.  Measurement and characterization of link quality metrics in energy constrained wireless sensor networks , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[7]  F. Jiang,et al.  Exploiting the capture effect for collision detection and recovery , 2005, The Second IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II..

[8]  Jenhui Chen,et al.  A new multichannel access protocol for IEEE 802.11 ad hoc wireless LANs , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[9]  Tian He,et al.  Realistic and Efficient Multi-Channel Communications in Wireless Sensor Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[10]  Alec Wolman,et al.  A multi-radio unification protocol for IEEE 802.11 wireless networks , 2004, First International Conference on Broadband Networks.

[11]  David E. Culler,et al.  Telos: enabling ultra-low power wireless research , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[12]  Jean C. Walrand,et al.  Comparison of Multichannel MAC Protocols , 2008, IEEE Transactions on Mobile Computing.

[13]  Raghupathy Sivakumar,et al.  Component based channel assignment in single radio, multi-channel ad hoc networks , 2006, MobiCom '06.

[14]  Sang Hyuk Son,et al.  TMMAC: An Energy Efficient Multi-Channel MAC Protocol for Ad Hoc Networks , 2007, 2007 IEEE International Conference on Communications.

[15]  Nitin H. Vaidya,et al.  Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks , 2006, MOCO.

[16]  J. J. Garcia-Luna-Aceves,et al.  Channel-hopping multiple access , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[17]  Gang Zhou,et al.  MMSN: Multi-Frequency Media Access Control for Wireless Sensor Networks , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[18]  Samir R. Das,et al.  Multichannel CSMA with signal power-based channel selection for multihop wireless networks , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[19]  Dharma P. Agrawal,et al.  CMAC - A multi-channel energy efficient MAC for wireless sensor networks , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[20]  Edward W. Knightly,et al.  Starvation mitigation through multi-channel coordination in CSMA multi-hop wireless networks , 2006, MobiHoc '06.

[21]  Nitin H. Vaidya,et al.  Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver , 2004, MobiHoc '04.

[22]  Lifei Huang,et al.  On the scalability of IEEE 802.11 ad hoc networks , 2002, MobiHoc '02.

[23]  David A. Maltz,et al.  A performance comparison of multi-hop wireless ad hoc network routing protocols , 1998, MobiCom '98.

[24]  Vikram Srinivasan,et al.  CAM-MAC: A Cooperative Asynchronous Multi-Channel MAC Protocol for Ad Hoc Networks , 2006, 2006 3rd International Conference on Broadband Communications, Networks and Systems.

[25]  Vikram Srinivasan,et al.  Analyzing DISH for multi-channel MAC protocols in wireless networks , 2008, MobiHoc '08.

[26]  Vikram Srinivasan,et al.  Altruistic cooperation for energy-efficient multi-channel MAC protocols , 2007, MobiCom '07.

[27]  Himanshu Gupta,et al.  Multichannel MAC Protocols for Wireless Networks , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[28]  Jun Zhuang,et al.  A multichannel CSMA MAC protocol for multihop wireless networks , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[29]  P. Bahl,et al.  SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks , 2004, MobiCom '04.

[30]  Ramesh Govindan,et al.  Understanding packet delivery performance in dense wireless sensor networks , 2003, SenSys '03.

[31]  Tarek F. Abdelzaher,et al.  2008 International Conference on Information Processing in Sensor Networks A Practical Multi-Channel Media Access Control Protocol for Wireless Sensor Networks ∗ , 2022 .

[32]  J. J. Garcia-Luna-Aceves,et al.  Channel Hopping Multiple Access with Packet Trains for Ad Hoc Networks , 2000 .

[33]  Samir Ranjan Das,et al.  A multichannel CSMA MAC protocol with receiver-based channel selection for multihop wireless networks , 2001, Proceedings Tenth International Conference on Computer Communications and Networks (Cat. No.01EX495).