Production of recombinant scorpion antivenoms in E. coli: current state and perspectives

[1]  A. Mukherjee,et al.  In vitro laboratory analyses of commercial anti-scorpion (Mesobuthus tamulus) antivenoms reveal their quality and safety but the prevalence of a low proportion of venom-specific antibodies. , 2022, Toxicon : official journal of the International Society on Toxinology.

[2]  L. Possani,et al.  Characterization of Four Medically Important Toxins from Centruroides huichol Scorpion Venom and Its Neutralization by a Single Recombinant Antibody Fragment , 2022, Toxins.

[3]  S. Muyldermans,et al.  Neutralizing Dromedary-Derived Nanobodies Against BotI-Like Toxin From the Most Hazardous Scorpion Venom in the Middle East and North Africa Region , 2022, Frontiers in Immunology.

[4]  Ayoub Ksouri,et al.  The Pharmacological and Structural Basis of the AahII–NaV1.5 Interaction and Modulation by the Anti-AahII Nb10 Nanobody , 2022, Frontiers in Pharmacology.

[5]  F. Rahbarizadeh,et al.  A comprehensive comparison between camelid nanobodies and single chain variable fragments , 2021, Biomarker Research.

[6]  L. Possani,et al.  Full Neutralization of Centruroides sculpturatus Scorpion Venom by Combining Two Human Antibody Fragments , 2021, Toxins.

[7]  A. Olvera-Rodríguez,et al.  The venom of the scorpion Centruroides limpidus, which causes the highest number of stings in Mexico, is neutralized by two recombinant antibody fragments. , 2021, Molecular immunology.

[8]  L. Fillaudeau,et al.  Effect of temperature on the production of a recombinant antivenom in fed-batch mode , 2021, Applied Microbiology and Biotechnology.

[9]  M. Costas,et al.  Comparative assessment of the VH-VL and VL-VH orientations of single-chain variable fragments of scorpion toxin-neutralizing antibodies. , 2020, Molecular immunology.

[10]  Roberto J. Miranda,et al.  VENOM DIVERSITY IN THE NEOTROPICAL SCORPION GENUS TITYUS: IMPLICATIONS FOR ANTIVENOM DESIGN EMERGING FROM MOLECULAR AND IMMUNOCHEMICAL ANALYSES ACROSS ENDEMIC AREAS OF SCORPIONISM. , 2020, Acta tropica.

[11]  F. Koch-Nolte,et al.  Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy , 2019, Antibodies.

[12]  S. Muyldermans,et al.  Nanobodies as novel therapeutic agents in envenomation. , 2018, Biochimica et biophysica acta. General subjects.

[13]  S. Williams,et al.  E. coli strain engineering for the production of advanced biopharmaceutical products , 2018, FEMS microbiology letters.

[14]  H. M. Tahir,et al.  Effect of Milking Method, Diet, and Temperature on Venom Production in Scorpions , 2018, Journal of insect science.

[15]  A. H. Laustsen,et al.  Basics of Antibody Phage Display Technology , 2018, Toxins.

[16]  Pratyoosh Shukla,et al.  Sophisticated Cloning, Fermentation, and Purification Technologies for an Enhanced Therapeutic Protein Production: A Review , 2017, Front. Pharmacol..

[17]  B. V. Ayyar,et al.  Optimizing antibody expression: The nuts and bolts. , 2017, Methods.

[18]  Pratyoosh Shukla,et al.  Microbial platform technology for recombinant antibody fragment production: A review , 2017, Critical reviews in microbiology.

[19]  Dirk Weuster-Botz,et al.  Parallel steady state studies on a milliliter scale accelerate fed‐batch bioprocess design for recombinant protein production with Escherichia coli , 2016, Biotechnology progress.

[20]  S. S. Veiga,et al.  Expression and immunological cross-reactivity of LALP3, a novel astacin-like metalloprotease from brown spider (Loxosceles intermedia) venom. , 2016, Biochimie.

[21]  L. Possani,et al.  Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions. , 2016, Toxicon : official journal of the International Society on Toxinology.

[22]  A. H. Laustsen,et al.  Biotechnological Trends in Spider and Scorpion Antivenom Development , 2016, Toxins.

[23]  R. Vandenbroucke,et al.  Nanobodies as therapeutics: big opportunities for small antibodies. , 2016, Drug discovery today.

[24]  M. Hust,et al.  Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display , 2016, Proteomics. Clinical applications.

[25]  N. Tripathi Production and Purification of Recombinant Proteins from Escherichia coli , 2016 .

[26]  D. Galbraith,et al.  Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF. , 2016, Protein expression and purification.

[27]  J. Kavanagh,et al.  Simulation and prediction of protein production in fed‐batch E. coli cultures: An engineering approach , 2016, Biotechnology and bioengineering.

[28]  Pi Liu,et al.  Orthogonal optimization of prokaryotic expression of a natural snake venom phospholipase A2 inhibitor from Sinonatrix annularis. , 2015, Toxicon : official journal of the International Society on Toxinology.

[29]  Antônio Carlos Luperni Horta,et al.  ON-LINE MONITORING OF BIOMASS CONCENTRATION BASED ON A CAPACITANCE SENSOR: ASSESSING THE METHODOLOGY FOR DIFFERENT BACTERIA AND YEAST HIGH CELL DENSITY FED-BATCH CULTURES , 2015 .

[30]  M. Darvish,et al.  Development of protective agent against Hottentotta saulcyi venom using camelid single-domain antibody. , 2015, Molecular immunology.

[31]  E. Rudiño-Piñera,et al.  Optimal Neutralization of Centruroides noxius Venom Is Understood through a Structural Complex between Two Antibody Fragments and the Cn2 Toxin* , 2015, The Journal of Biological Chemistry.

[32]  Marcelo Fernández-Lahore,et al.  High-level fed-batch fermentative expression of an engineered Staphylococcal protein A based ligand in E. coli: purification and characterization , 2015, AMB Express.

[33]  A. de Marco Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs , 2015, Microbial Cell Factories.

[34]  A. B. Ariff,et al.  Kinetics and modelling of batch fermentation for the production of organic solvent tolerant and thermostable lipase by recombinant E. coli / Organik çözücü toleranslı ve ısıya dayanıklı rekombinan E. coli lipaz üretiminin kinetiği ve grup fermentasyonu modellemesi , 2015 .

[35]  E. De Pauw,et al.  Expression of a new serine protease from Crotalus durissus collilineatus venom in Pichia pastoris and functional comparison with the native enzyme , 2015, Applied Microbiology and Biotechnology.

[36]  E. Redwan,et al.  Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives. , 2015, Journal of microbiology and biotechnology.

[37]  S. Boubaker,et al.  Effectiveness of the Androctonus Australis Hector Nanobody NbF12-10 Antivenom to Neutralize Significantly the Toxic Effect and Tissue DamageProvoked by Fraction of Androctonus mauretanicus (Morocco) ScorpionVenom , 2015 .

[38]  W. Monteiro,et al.  Severity of Scorpion Stings in the Western Brazilian Amazon: A Case-Control Study , 2015, PloS one.

[39]  M. Cristina Cardoso,et al.  Nanobodies and recombinant binders in cell biology , 2015, The Journal of cell biology.

[40]  Srinivasa Reddy Ronda,et al.  Improved Production and Characterization of Recombinant Human Granulocyte Colony Stimulating Factor from E. coli under Optimized Downstream Processes. , 2015, Protein expression and purification.

[41]  E. Kalapothakis,et al.  Evolution of alternative methodologies of scorpion antivenoms production. , 2015, Toxicon : official journal of the International Society on Toxinology.

[42]  R. Dehghani,et al.  Scorpion sting prevention and treatment in ancient Iran , 2015, Journal of traditional and complementary medicine.

[43]  D. Schofield,et al.  Genetic methods of antibody generation and their use in immunohistochemistry. , 2014, Methods.

[44]  N. Aubrey,et al.  Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential , 2014, Toxins.

[45]  Tim W. Overton,et al.  Recombinant protein production in bacterial hosts. , 2014, Drug discovery today.

[46]  Germán L. Rosano,et al.  Recombinant protein expression in Escherichia coli: advances and challenges , 2014, Front. Microbiol..

[47]  S. Muyldermans,et al.  A general protocol for the generation of Nanobodies for structural biology , 2014, Nature Protocols.

[48]  Jae-Wook Oh,et al.  Expression and Purification of Recombinant Human Granulocyte Colony-Stimulating Factor in Fed-Batch Culture of Escherichia coli , 2014, Applied Biochemistry and Biotechnology.

[49]  Oliver Spadiut,et al.  Microbials for the production of monoclonal antibodies and antibody fragments , 2014, Trends in biotechnology.

[50]  B. Wallace,et al.  Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli , 2014, Biochimica et biophysica acta.

[51]  L. Possani,et al.  A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins. , 2013, Toxicon : official journal of the International Society on Toxinology.

[52]  G. Bodelón,et al.  Selection of Single Domain Antibodies from Immune Libraries Displayed on the Surface of E. coli Cells with Two β-Domains of Opposite Topologies , 2013, PloS one.

[53]  Michael Hust,et al.  Expression of Recombinant Antibodies , 2013, Front. Immunol..

[54]  Serge Muyldermans,et al.  Nanobodies: natural single-domain antibodies. , 2013, Annual review of biochemistry.

[55]  S. Muyldermans,et al.  Nanobodies and their potential applications. , 2013, Nanomedicine.

[56]  Alois Jungbauer,et al.  Harnessing Candida tenuis and Pichia stipitis in whole‐cell bioreductions of o‐chloroacetophenone: Stereoselectivity, cell activity, in situ substrate supply and product removal , 2013, Biotechnology journal.

[57]  Y. P. Khasa,et al.  Enhancing toxic protein expression in Escherichia coli fed-batch culture using kinetic parameters: Human granulocyte-macrophage colony-stimulating factor as a model system. , 2013, Journal of bioscience and bioengineering.

[58]  L. Possani,et al.  A single mutation in framework 2 of the heavy variable domain improves the properties of a diabody and a related single-chain antibody. , 2012, Journal of molecular biology.

[59]  S. Muyldermans,et al.  Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. , 2012, Toxicology and applied pharmacology.

[60]  J. Chippaux Emerging options for the management of scorpion stings , 2012, Drug design, development and therapy.

[61]  P A Marichal-Gallardo,et al.  State‐of‐the‐art in downstream processing of monoclonal antibodies: Process trends in design and validation , 2012, Biotechnology progress.

[62]  Y. Laid,et al.  [Epidemiological data on scorpion envenomation in Algeria]. , 2012, Bulletin de la Société de Pathologie Exotique.

[63]  V. M. Gonçalves,et al.  Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences , 2012, Applied Microbiology and Biotechnology.

[64]  M. Pedraza-Escalona,et al.  Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: neutralization capacity versus thermodynamic stability. , 2012, Immunology letters.

[65]  V. Petrenko,et al.  Phagemid vectors for phage display: properties, characteristics and construction. , 2012, Journal of molecular biology.

[66]  T. C. Zangirolami,et al.  Intensification of high cell-density cultivations of rE. coli for production of S. pneumoniae antigenic surface protein, PspA3, using model-based adaptive control , 2012, Bioprocess and Biosystems Engineering.

[67]  Chung-Jr Huang,et al.  Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements , 2012, Journal of Industrial Microbiology & Biotechnology.

[68]  Marco Jenzsch,et al.  Insights into large-scale cell-culture reactors: I. Liquid mixing and oxygen supply. , 2011, Biotechnology journal.

[69]  V. M. Gonçalves,et al.  Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences , 2011, Applied Microbiology and Biotechnology.

[70]  S. Muyldermans,et al.  Immunological aspects of scorpion toxins: current status and perspectives. , 2011, Inflammation & allergy drug targets.

[71]  L. Possani,et al.  Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion. , 2011, Immunology letters.

[72]  S. Muyldermans,et al.  Development of Cys38 knock-out and humanized version of NbAahII10 nanobody with improved neutralization of AahII scorpion toxin. , 2011, Protein engineering, design & selection : PEDS.

[73]  J. López-Santín,et al.  A semiempirical model to control the production of a recombinant aldolase in high cell density cultures of Escherichia coli , 2011 .

[74]  R. Tuuri,et al.  Scorpion Envenomation and Antivenom Therapy , 2011, Pediatric emergency care.

[75]  L. Possani,et al.  Exploiting Cross-reactivity to Neutralize Two Different Scorpion Venoms with One Single Chain Antibody Fragment* , 2010, The Journal of Biological Chemistry.

[76]  S. Muyldermans,et al.  A bispecific nanobody to provide full protection against lethal scorpion envenoming , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[77]  Xueting Cai,et al.  Expression and purification of an antitumor‐analgesic peptide from the venom of Mesobuthus martensii Karsch by small ubiquitin–related modifier fusion in Escherichia coli , 2010, Biotechnology progress.

[78]  Jose C. Merchuk,et al.  Oxygen uptake rate in microbial processes: An overview , 2010 .

[79]  A. Farnoud,et al.  Enhancement of Human γ-Interferon Production in Recombinant E. coli Using Batch Cultivation , 2010, Applied biochemistry and biotechnology.

[80]  Jian Gao,et al.  Phage display and its application in vaccine design , 2010, Annals of Microbiology.

[81]  S. Muyldermans,et al.  Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. , 2009, The Biochemical journal.

[82]  David Resina,et al.  Alternative production process strategies in E. coli improving protein quality and downstream yields , 2009 .

[83]  A. de Marco,et al.  Microbial Cell Factories Strategies for Successful Recombinant Expression of Disulfide Bond-dependent Proteins in Escherichia Coli , 2022 .

[84]  F. García-Ochoa,et al.  Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. , 2009, Biotechnology advances.

[85]  K. Ella,et al.  Development of pilot scale production process and characterization of a recombinant multiepitope malarial vaccine candidate FALVAC-1A expressed in Escherichia coli. , 2008, Protein expression and purification.

[86]  J. Chippaux,et al.  Epidemiology of scorpionism: a global appraisal. , 2008, Acta tropica.

[87]  S. Muyldermans,et al.  VHH, bivalent domains and chimeric Heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI'. , 2008, Molecular immunology.

[88]  S. Dübel,et al.  Production systems for recombinant antibodies. , 2008, Frontiers in bioscience : a journal and virtual library.

[89]  W. N. Chen,et al.  Preparing recombinant single chain antibodies , 2008 .

[90]  A. Jalali,et al.  An epidemiological and a clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus. , 2007, Toxicon : official journal of the International Society on Toxinology.

[91]  Chunfu Wu,et al.  Cloning, expression, and pharmacological activity of BmK AS, an active peptide from scorpion Buthus martensii Karsch , 2007, Biotechnology Letters.

[92]  V. Quintero-Hernández,et al.  The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. , 2007, Molecular immunology.

[93]  S. Moncada,et al.  Antigenic cross-reactivity between sixteen venoms from scorpions belonging to six genera , 2007, Clinical toxicology.

[94]  M. Kuhlmann,et al.  The protein science of biosimilars. , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[95]  Choong-Kyung Kang,et al.  Statistical medium formulation and process modeling by mixture design of experiment for peptide overexpression in recombinant Escherichia coli , 2006, Applied biochemistry and biotechnology.

[96]  Walter Keller,et al.  Bacterial fermentation of recombinant major wasp allergen Antigen 5 using oxygen limiting growth conditions improves yield and quality of inclusion bodies. , 2006, Protein expression and purification.

[97]  Rimvydas Simutis,et al.  Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. , 2006, Journal of biotechnology.

[98]  Klaus Graumann,et al.  Manufacturing of recombinant therapeutic proteins in microbial systems , 2006, Biotechnology journal.

[99]  N. Krishna,et al.  Expression of functional scorpion neurotoxin Lqq-V in E.coli , 2006, Peptides.

[100]  H. Hammouri,et al.  Modeling and observer design for recombinant Escherichia coli strain , 2006, Bioprocess and biosystems engineering.

[101]  D. Summers,et al.  Recombinant protein secretion in Escherichia coli. , 2005, Biotechnology advances.

[102]  Baltazar Becerril,et al.  A strategy for the generation of specific human antibodies by directed evolution and phage display , 2005, The FEBS journal.

[103]  Zhihao Zheng,et al.  Using a kinetic model that considers cell segregation to optimize hEGF expression in fed-batch cultures of recombinant Escherichia coli , 2005, Bioprocess and biosystems engineering.

[104]  V. Quintero-Hernández,et al.  Directed evolution, phage display and combination of evolved mutants: a strategy to recover the neutralization properties of the scFv version of BCF2 a neutralizing monoclonal antibody specific to scorpion toxin Cn2. , 2005, Journal of molecular biology.

[105]  F. Baneyx,et al.  Recombinant protein folding and misfolding in Escherichia coli , 2004, Nature Biotechnology.

[106]  S. Kashima,et al.  Cloning and expression of an acidic platelet aggregation inhibitor phospholipase A2 cDNA from Bothrops jararacussu venom gland. , 2004, Protein expression and purification.

[107]  H. Rochat,et al.  Engineering of a recombinant Fab from a neutralizing IgG directed against scorpion neurotoxin AahI, and functional evaluation versus other antibody fragments. , 2004, Toxicon : official journal of the International Society on Toxinology.

[108]  Jacqueline Barona,et al.  Aspectos toxinológicos e inmunoquímicos del veneno del escorpión Tityus pachyurus Pocock de Colombia: capacidad neutralizante de antivenenos producidos en Latinoamérica. , 2004 .

[109]  G. Wilson,et al.  Effect of imidazole on the solubility of a his-tagged antibody fragment. , 2003, Hybridoma and hybridomics.

[110]  H. Karoui,et al.  Immunized camel sera and derived immunoglobulin subclasses neutralizing Androctonus australis hector scorpion toxins. , 2003, Toxicon : official journal of the International Society on Toxinology.

[111]  K. Ulgen,et al.  Modeling of the induced expression for high-level production of a foreign protein by recombinant E. coli under the control of the T7 phage promoter , 2003 .

[112]  F. Laraba-Djebari,et al.  [Application of ELISA for the quantification of Androctonus australis hector venom in the envenomed serum of people and rats before and after immunotherapy]. , 2003, Bulletin de la Societe de pathologie exotique.

[113]  D. Warrell,et al.  Report of a WHO workshop on the standardization and control of antivenoms. , 2003, Toxicon : official journal of the International Society on Toxinology.

[114]  H. Rochat,et al.  Design and evaluation of a diabody to improve protection against a potent scorpion neurotoxin , 2003, Cellular and Molecular Life Sciences CMLS.

[115]  H. Selistre‐de‐Araujo,et al.  Expression, refolding, and in vitro activation of a recombinant snake venom pro-metalloprotease. , 2003, Protein expression and purification.

[116]  D. Kyriakidis,et al.  A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein in Escherichia coli. , 2002, Biotechnology and bioengineering.

[117]  H. Vacher,et al.  Use of fusion protein constructs to generate potent immunotherapy and protection against scorpion toxins. , 2001, Vaccine.

[118]  J. Frère,et al.  β-Lactamase Inhibitors Derived from Single-Domain Antibody Fragments Elicited in the Camelidae , 2001, Antimicrobial Agents and Chemotherapy.

[119]  E. Moreau,et al.  Construction and functional evaluation of a single-chain antibody fragment that neutralizes toxin AahI from the venom of the scorpion Androctonus australis hector. , 2001, European journal of biochemistry.

[120]  R. Ward,et al.  Refolding and purification of Bothropstoxin-I, a Lys49-phospholipase A2 homologue, expressed as inclusion bodies in Escherichia coli. , 2001, Protein expression and purification.

[121]  H. Rochat,et al.  A Recombinant scFv/Streptavidin-Binding Peptide Fusion Protein for the Quantitative Determination of the Scorpion Venom Neurotoxin AahI , 2001, Biological chemistry.

[122]  A. K. Gombert,et al.  Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction , 2000 .

[123]  N. Lazar,et al.  Scorpion envenomation and serotherapy in Morocco. , 2000, The American journal of tropical medicine and hygiene.

[124]  W A Weigand,et al.  Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. , 1999, Biotechnology and bioengineering.

[125]  F. Abroug,et al.  Serotherapy in scorpion envenomation: a randomised controlled trial , 1999, The Lancet.

[126]  M. Mousli,et al.  A recombinant single‐chain antibody fragment that neutralizes toxin II from the venom of the scorpion Androctonus australis hector , 1999, FEBS letters.

[127]  C. Amaral,et al.  Immunotherapy for scorpion envenoming in Brazil. , 1998, Toxicon : official journal of the International Society on Toxinology.

[128]  M. Mousli,et al.  Production and characterization of a bivalent single chain Fv/alkaline phosphatase conjugate specific for the hemocyanin of the scorpion Androctonus australis. , 1998, Biochimica et Biophysica Acta.

[129]  J. Chippaux,et al.  Venoms, antivenoms and immunotherapy. , 1998, Toxicon : official journal of the International Society on Toxinology.

[130]  E. Feyfant,et al.  Influence of a NH2‐terminal extension on the activity of KTX2, a K+ channel blocker purified from Androctonus australis scorpion venom , 1997, FEBS letters.

[131]  D. Gordon,et al.  In vitro folding and functional analysis of an anti-insect selective scorpion depressant neurotoxin produced in Escherichia coli. , 1997, Protein expression and purification.

[132]  A. Ménez,et al.  A recombinant insect-specific alpha-toxin of Buthus occitanus tunetanus scorpion confers protection against homologous mammal toxins. , 1996, European journal of biochemistry.

[133]  R. Donovan,et al.  Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of thelac promoter , 1996, Journal of Industrial Microbiology.

[134]  B. Fox,et al.  Lactose fed-batch overexpression of recombinant metalloproteins in Escherichia coli BL21 (DE3): process control yielding high levels of metal-incorporated, soluble protein. , 1995, Protein expression and purification.

[135]  M. Ismail The scorpion envenoming syndrome. , 1995, Toxicon : official journal of the International Society on Toxinology.

[136]  D. Vaux,et al.  Production of a functional anti-scorpion hemocyanin scFv in Escherichia coli. , 1995, Archives of biochemistry and biophysics.

[137]  H. Masaki,et al.  A model system for the continuous production of a heterologous protein using a novel secretion promoting factor which operates in Escherichia coli. , 1994, Journal of biotechnology.

[138]  L. Possani,et al.  Scorpionism and serotherapy in Mexico. , 1994, Toxicon : official journal of the International Society on Toxinology.

[139]  N. Nancib,et al.  Modelling of batch fermentation of a recombinant Escherichia coli producing glyceraldehyde-3-phosphate dehydrogenase on a complex selective medium , 1993 .

[140]  M. Gelb,et al.  High-level expression in Escherichia coli and rapid purification of enzymatically active honey bee venom phospholipase A2. , 1992, Biochimica et biophysica acta.

[141]  H. Blanch,et al.  Recombinant Protein Expression in High Cell Density Fed-Batch Cultures of Escherichia Coli , 1992, Bio/Technology.

[142]  X M Yang,et al.  Optimization of a cultivation process for recombinant protein production by Escherichia coli. , 1992, Journal of biotechnology.

[143]  H R Hoogenboom,et al.  Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. , 1991, Nucleic acids research.

[144]  H. Bawaskar,et al.  Scorpion sting: a review of 121 cases , 1991 .

[145]  U. Rinas,et al.  Structured model for cell growth and enzyme production by recombinant Escherichia coli , 1991, Applied Microbiology and Biotechnology.

[146]  A. Plückthun,et al.  Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. , 1988, Science.

[147]  C. Granier,et al.  Use of antibodies specific to defined regions of scorpion alpha-toxin to study its interaction with its receptor site on the sodium channel. , 1986, Biochemistry.

[148]  OUP accepted manuscript , 2021, FEMS Microbiology Reviews.

[149]  Jinghai Zhang,et al.  A novel expression vector for the improved solubility of recombinant scorpion venom in Escherichia coli. , 2017, Biochemical and biophysical research communications.

[150]  C. Sevcik,et al.  Scorpionism and Dangerous Species of Venezuela , 2014 .

[151]  E. Arantes,et al.  Scorpionism and dangerous species of Brazil , 2014 .

[152]  J. Chippaux,et al.  [Guidelines for the production, control and regulation of snake antivenom immunoglobulins]. , 2010, Biologie aujourd'hui.

[153]  Xiaojuan Zhu,et al.  Nanobodies - the new concept in antibody engineering , 2009 .

[154]  C. Devaux,et al.  Using a recombinant bispecific antibody to block Na+-channel toxins protects against experimental scorpion envenoming , 2006, Cellular and Molecular Life Sciences.

[155]  A. Filazi,et al.  Optimization of antiscorpion venom production , 2006 .

[156]  尚龙安,et al.  Kinetics of High Cell Density Fed-batch Culture of Recombinant Escherichia coli Producing Human-like Collagen , 2006 .

[157]  S. Lucas,et al.  Maintenance of scorpions of the genus Tityus Koch (Scorpiones, Buthidae) for venom obtention at Instituto Butantan, São Paulo, Brazil , 2004 .

[158]  E. Horjales,et al.  Bacterial expression, purification and functional characterization of a recombinant chimeric Fab derived from murine mAb BCF2 that neutralizes the venom of the scorpion Centruroides noxius hoffmann. , 2004, Toxicon : official journal of the International Society on Toxinology.

[159]  N. Krishna,et al.  Expression of functional recombinant scorpion beta-neurotoxin Css II in E. coli. , 2000, Peptides.

[160]  Ian David Lockhart Bogle,et al.  Modelling the effects of glucose feeding on a recombinant E. coli fermentation , 1999 .

[161]  I. Holland,et al.  Protein secretion pathway in Escherichia coli. , 1994, Current opinion in biotechnology.

[162]  D. Oliver Protein secretion in Escherichia coli. , 1985, Annual review of microbiology.

[163]  W. Gerrard Effect of Temperature , 1976 .