An evaluation study of biclusters visualization techniques of gene expression data

Abstract Biclustering is a non-supervised data mining technique used to analyze gene expression data, it consists to classify subgroups of genes that have similar behavior under subgroups of conditions. The classified genes can have independent behavior under other subgroups of conditions. Discovering such co-expressed genes, called biclusters, can be helpful to find specific biological features such as gene interactions under different circumstances. Compared to clustering, biclustering has two main characteristics: bi-dimensionality which means grouping both genes and conditions simultaneously and overlapping which means allowing genes to be in more than one bicluster at the same time. Biclustering algorithms, which continue to be developed at a constant pace, give as output a large number of overlapping biclusters. Visualizing groups of biclusters is still a non-trivial task due to their overlapping. In this paper, we present the most interesting techniques to visualize groups of biclusters and evaluate them.

[1]  Haifa Ben Saber,et al.  DNA Microarray Data Analysis: A New Survey on Biclustering , 2014 .

[2]  Sorin Istrail,et al.  Physical Mapping with Repeated Probes: The Hypergraph Superstring Problem , 1999, CPM.

[3]  Margaret E. Baron,et al.  A Note on the Historical Development of Logic Diagrams: Leibniz, Euler and Venn , 1969, The Mathematical Gazette.

[4]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[6]  Eckart Zitzler,et al.  BicAT: a biclustering analysis toolbox , 2006, Bioinform..

[7]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[8]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[9]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[10]  Michael Friendly,et al.  Milestones in the History of Data Visualization: A Case Study in Statistical Historiography , 2004, GfKl.

[11]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[12]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Marc Streit,et al.  Furby: fuzzy force-directed bicluster visualization , 2014, BMC Bioinformatics.

[14]  T. M. Murali,et al.  Automatic layout and visualization of biclusters , 2006, Algorithms for Molecular Biology.

[15]  Rodrigo Santamaría,et al.  Biological Knowledge Visualization , 2013 .

[16]  John Maeda,et al.  Computational information design , 2004 .

[17]  Mourad Elloumi,et al.  Suitable Overlapping Set Visualization Techniques and Their Application to Visualize Biclustering Results on Gene Expression Data , 2018, DEXA Workshops.

[18]  Mourad Elloumi,et al.  Biclustering of Microarray Data , 2010 .

[19]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[20]  Jin-Kao Hao,et al.  Survey on Biclustering of Gene Expression Data , 2013 .

[21]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[22]  Sven Bergmann,et al.  ExpressionView - an interactive viewer for modules identified in gene expression data , 2010, Bioinform..

[23]  Michael Burch,et al.  BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Data , 2011, ISVC.

[24]  Jesús S. Aguilar-Ruiz,et al.  Biclustering on expression data: A review , 2015, J. Biomed. Informatics.

[25]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[26]  Yang Xiang,et al.  Overlapping Matrix Pattern Visualization: A Hypergraph Approach , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[27]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[28]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[29]  Roberto Therón,et al.  A visual analytics approach for understanding biclustering results from microarray data , 2008, BMC Bioinformatics.

[30]  Andreas Holzinger,et al.  Human-Computer Interaction and Knowledge Discovery (HCI-KDD): What Is the Benefit of Bringing Those Two Fields to Work Together? , 2013, CD-ARES.

[31]  Rodrigo Santamaría Vicente Visual analysis of gene expression data by means of biclustering , 2011 .

[32]  Jesús S. Aguilar-Ruiz,et al.  Shifting and scaling patterns from gene expression data , 2005, Bioinform..