Discussion of "Geodesic Monte Carlo on Embedded Manifolds"
暂无分享,去创建一个
P. Diaconis | I. Dryden | M. Girolami | B. Shahbaba | Simon Byrne | Shiwei Lan | J. Kent | S. Holmes | C. Seiler | M. Pereyra | J. Streets | Daniel Simpson | Susan P. Holmes
[1] P. Diaconis,et al. Fluctuations of the Bose–Einstein condensate , 2013, 1306.3625.
[2] GelmanAndrew,et al. The No-U-turn sampler , 2014 .
[3] Jiawei Han,et al. Spectral Clustering , 2018, Data Clustering: Algorithms and Applications.
[4] Asaad M. Ganeiber,et al. A new method to simulate the Bingham and related distributions in directional data analysis with applications , 2013, 1310.8110.
[5] Xavier Pennec,et al. Random Spatial Structure of Geometric Deformations and Bayesian Nonparametrics , 2013, GSI.
[6] M. Meilă,et al. Non-linear dimensionality reduction: Riemannian metric estimation and the problem of geometric discovery , 2013, 1305.7255.
[7] Nando de Freitas,et al. Adaptive Hamiltonian and Riemann Manifold Monte Carlo , 2013, ICML.
[8] Michael Betancourt,et al. A General Metric for Riemannian Manifold Hamiltonian Monte Carlo , 2012, GSI.
[9] Pierre Vandergheynst,et al. Compressive Source Separation: Theory and Methods for Hyperspectral Imaging , 2012, IEEE Transactions on Image Processing.
[10] P. Diaconis,et al. Sampling From A Manifold , 2012, 1206.6913.
[11] Yichuan Zhang,et al. Continuous Relaxations for Discrete Hamiltonian Monte Carlo , 2012, NIPS.
[12] Pierre Vandergheynst,et al. Compressed Sensing of Simultaneous Low-Rank and Joint-Sparse Matrices , 2012, ArXiv.
[13] David B. Dunson,et al. Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds , 2012, Annals of the Institute of Statistical Mathematics.
[14] Nicolas Dobigeon,et al. Spectral mixture analysis of EELS spectrum-images. , 2012, Ultramicroscopy.
[15] Stephen R. Marsland,et al. Geodesic Warps by Conformal Mappings , 2012, International Journal of Computer Vision.
[16] Antonio J. Plaza,et al. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[17] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[18] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[19] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[20] Otso Ovaskainen,et al. Making more out of sparse data: hierarchical modeling of species communities. , 2011, Ecology.
[21] Patrick L. Combettes,et al. Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[22] José M. Bioucas-Dias,et al. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.
[23] Juan Carlos Abril,et al. Saddlepoint Approximations , 2011, International Encyclopedia of Statistical Science.
[24] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[25] Jean-Yves Tourneret,et al. Bayesian Orthogonal Component Analysis for Sparse Representation , 2009, IEEE Transactions on Signal Processing.
[26] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[27] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[28] Mikhail Belkin,et al. Consistency of spectral clustering , 2008, 0804.0678.
[29] Mikhail Belkin,et al. Convergence of Laplacian Eigenmaps , 2006, NIPS.
[30] Gareth O. Roberts,et al. Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .
[31] I. Dryden. Statistical analysis on high-dimensional spheres and shape spaces , 2005, math/0508279.
[32] A. Wood,et al. Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants , 2005 .
[33] P. Green,et al. Bayesian alignment using hierarchical models, with applications in protein bioinformatics , 2005, math/0503712.
[34] M. Miller. Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.
[35] G. R. W. Quispel,et al. Geometric integration of conservative polynomial ODEs , 2003 .
[36] T. O’Neil. Geometric Measure Theory , 2002 .
[37] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[38] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[39] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[40] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[41] K. Rzążewski,et al. Fluctuations of Bose-Einstein Condensate , 1997 .
[42] Matthew A. Grayson,et al. A short note on the evolution of a surface by its mean curvature , 1989 .
[43] D. Freedman,et al. On the consistency of Bayes estimates , 1986 .
[44] Daniel Asimov,et al. The grand tour: a tool for viewing multidimensional data , 1985 .