Towards a computational model for −1 eukaryotic frameshifting sites

Abstract Motivation: Unconventional decoding events are now well acknowledged, but not yet well formalized. In this study, we present a bioinformatics analysis of eukaryotic −1 frameshifting, in order to model this event. Results: A consensus model has already been established for −1 frameshifting sites. Our purpose here is to provide new constraints which make the model more precise. We show how a machine learning approach can be used to refine the current model. We identify new properties that may be involved in frameshifting. Each of the properties found was experimentally validated. Initially, we identify features of the overall model that are to be simultaneously satisfied. We then focus on the following two components: the spacer and the slippery sequence. As a main result, we point out that the identity of the primary structure of the so-called spacer is of great importance. Availability: Sequences of the oligonucleotides in the functional tests are available at http://www.igmors.u-psud.fr/rousset/bioinformatics/ Contact: bekaert@igmors.u-psud.frjpforest@lri.frchris@lri.fr * To whom correspondence should be addressed.

[1]  John F. Atkins,et al.  Ribosomal −1 Frameshifting during Decoding ofBacillus subtilis cdd Occurs at the Sequence CGA AAG , 1999, Journal of bacteriology.

[2]  Isabelle Hatin,et al.  Impact of the six nucleotides downstream of the stop codon on translation termination , 2001, EMBO reports.

[3]  C. Pleij,et al.  Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. , 1994, Nucleic acids research.

[4]  S. Peltz,et al.  Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. , 1999, Genome research.

[5]  I. Tinoco,et al.  The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. , 1995, Journal of molecular biology.

[6]  J. F. Atkins,et al.  Recoding: dynamic reprogramming of translation. , 1996, Annual review of biochemistry.

[7]  P. Rigby,et al.  Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. , 2001, Nucleic acids research.

[8]  R. Wickner,et al.  A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Napthine,et al.  Ribosomal Pausing at a Frameshifter RNA Pseudoknot Is Sensitive to Reading Phase but Shows Little Correlation with Frameshift Efficiency , 2001, Molecular and Cellular Biology.

[10]  H. Varmus,et al.  Characterization of ribosomal frameshifting in HIV-1 gag-pol expression , 1988, Nature.

[11]  S. Napthine,et al.  The role of RNA pseudoknot stem 1 length in the promotion of efficient −1 ribosomal frameshifting 1 , 1999, Journal of Molecular Biology.

[12]  C. Sensen,et al.  Complete DNA sequence of yeast chromosome XI , 1994, Nature.

[13]  I. Brierley,et al.  Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal , 1992, Journal of Molecular Biology.

[14]  H. Varmus,et al.  Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. , 1985, Science.

[15]  J. Gallant,et al.  The function of a ribosomal frameshifting signal from human immunodeficiency virus‐1 in Escherichia coli , 1994, Molecular microbiology.

[16]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[17]  J. Ng,et al.  PseudoBase: a database with RNA pseudoknots , 2000, Nucleic Acids Res..

[18]  O. Namy,et al.  Nonsense-mediated decay mutants do not affect programmed -1 frameshifting. , 2000, RNA.

[19]  M. Ruiz-Echevarría,et al.  Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents , 1998, Trends in Biotechnology.

[20]  Jonathan D. Dinman,et al.  Kinetics of Ribosomal Pausing during Programmed −1 Translational Frameshifting , 2000, Molecular and Cellular Biology.

[21]  I. Brierley,et al.  Ribosomal pausing during translation of an RNA pseudoknot , 1993, Molecular and cellular biology.

[22]  J A Bruenn,et al.  Ribosomal movement impeded at a pseudoknot required for frameshifting. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A Danchin,et al.  Detecting and analyzing DNA sequencing errors: toward a higher quality of the Bacillus subtilis genome sequence. , 1999, Genome research.

[24]  Claire Bertrand,et al.  Influence of the stacking potential of the base 3' of tandem shift codons on -1 ribosomal frameshifting used for gene expression. , 2002, RNA.

[25]  I. Brierley,et al.  Ribosomal frameshifting viral RNAs. , 1995, The Journal of general virology.

[26]  M. Hentze,et al.  Regulated ribosomal frameshifting by an RNA-protein interaction. , 1996, RNA.

[27]  A Kornberg,et al.  Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  I. Brierley,et al.  Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal☆ , 1991, Journal of Molecular Biology.

[29]  Ashwin Srinivasan,et al.  An assessment of submissions made to the Predictive Toxicology Evaluation Challenge , 1999, IJCAI.

[30]  Fabien Torre Intégration des biais de langage à l'algorithme générer-et-tester : contributions à l'apprentissage disjonctif , 2000 .

[31]  P. Farabaugh Programmed translational frameshifting. , 1996, Annual review of genetics.

[32]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[33]  A. Rich,et al.  Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Pleij,et al.  Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions. , 1995, RNA.

[35]  Raymond F. Gesteland,et al.  RECODE: a database of frameshifting, bypassing and codon redefinition utilized for gene expression , 2001, Nucleic Acids Res..

[36]  Peter W. J. Rigby,et al.  Shigemoto, K. et al. Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. Nucleic Acids Res. 29, 4079-4088 , 2001 .

[37]  R. Weiss,et al.  Recoding: reprogrammed genetic decoding. , 1992, Science.

[38]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[39]  H. Varmus,et al.  A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA. , 1996, Journal of molecular biology.

[40]  I. Tinoco,et al.  Conformation of a non-frameshifting RNA pseudoknot from mouse mammary tumor virus. , 1996, Journal of molecular biology.

[41]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[42]  M. Aigle,et al.  Complete DNA sequence of yeast chromosome II. , 1994, The EMBO journal.