The minimal theory for R-parity violation at the LHC

A bstractWe investigate the simplest gauge theory for spontaneous R-parity breaking and its testability at the LHC. This theory, based on a local B-L gauge symmetry, can be considered as the simplest framework for understanding the origin of the R-parity violating interactions, giving rise to potential lepton number violating signals and suppressed baryon number violating operators. The full spectrum of the theory and the constraints coming from neutrino masses are analyzed in detail. We discuss the proton decay issue and the possible dark matter candidates. In order to assess the testability of the theory we study the properties of the new gauge boson, the neutralino decays and the main production channels for the charged sleptons at the LHC. We find that final states with four charged leptons, three of them with the same-sign, and four jets are the most striking signals for the testability of the lepton number violation associated with spontaneous R-parity violation at the LHC.

[1]  G. Senjanovic,et al.  SO(10) theory of R-parity and neutrino mass , 2000, hep-ph/0004031.

[2]  P. F. Pérez,et al.  R-parity conservation via the Stueckelberg mechanism: LHC and Dark Matter Signals , 2012, Journal of High Energy Physics.

[3]  V. Barger,et al.  Three Layers of Neutrinos , 2010, 1010.4023.

[4]  B. Ovrut,et al.  The Mass Spectra, Hierarchy and Cosmology of B-L MSSM Heterotic Compactifications , 2010, 1005.5392.

[5]  R. Mohapatra,et al.  Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.

[6]  S. Bobrovskyi,et al.  Quasi-stable neutralinos at the LHC , 2011, 1107.0926.

[7]  J. Polchinski,et al.  Minimal Low-Energy Supergravity , 1983 .

[8]  Atlas Collaboration Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the Standard Model with the ATLAS detector , 2012, 1201.1091.

[9]  Y. Grossman,et al.  MFV SUSY: A Natural Theory for R-Parity Violation , 2011, 1111.1239.

[10]  Gravitino Dark Matter without R-parity , 2000, hep-ph/0005214.

[11]  G. Senjanovic,et al.  See-saw and supersymmetry or exact R-parity , 1999, hep-ph/9902409.

[12]  Gravitino dark matter in R-parity breaking vacua , 2007, hep-ph/0702184.

[13]  Pierre Fayet,et al.  Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino , 1975 .

[14]  M. L. Ferrer,et al.  Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the standard model with the ATLAS detector , 2012 .

[15]  J. Valle,et al.  A model for spontaneous R parity breaking , 1990 .

[16]  Savas Dimopoulos,et al.  Softly Broken Supersymmetry and SU(5) , 1981 .

[17]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[18]  Graham G. Ross,et al.  SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs , 1982 .

[19]  W. Porod,et al.  Determining R-parity violating parameters from neutrino and LHC data , 2011, 1106.4658.

[20]  J. Valle,et al.  Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters , 2011, 1103.0734.

[21]  S. Borgani,et al.  Light gravitinos as mixed dark matter , 1996, hep-ph/9605222.

[22]  B. Ovrut,et al.  THE B – L/ELECTROWEAK HIERARCHY IN SMOOTH HETEROTIC COMPACTIFICATIONS , 2009, 0910.1129.

[23]  A. Salam,et al.  Supersymmetry and fermion-number conservation , 1975 .

[24]  P. Fayet Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions , 1977 .

[25]  Sogee Spinner,et al.  Fate of R parity , 2010, 1005.4930.

[26]  P. Fayet Supersymmetry and weak, electromagnetic and strong interactions , 1976 .

[27]  P. F. Pérez,et al.  Proton stability in grand unified theories, in strings and in branes , 2006, hep-ph/0601023.

[28]  B. Ovrut,et al.  The B-L/Electroweak Hierarchy in Heterotic String and M-Theory , 2009, 0904.4509.

[29]  J. Hamann,et al.  Cosmology seeking friendship with sterile neutrinos , 2010, 1006.5276.

[30]  R. Mohapatra,et al.  The neutrino as the supersymmetric partner of the majoron , 1982 .

[31]  J. Hamann,et al.  Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option. , 2010, Physical review letters.

[32]  P. F. Pérez,et al.  SPONTANEOUS R-PARITY BREAKING AND LEFT-RIGHT SYMMETRY , 2008, 0811.3424.

[33]  Dawson,et al.  Search for supersymmetric particles in hadron-hadron collisions. , 1985, Physical review. D, Particles and fields.

[34]  D. Ghosh,et al.  Naturally light sterile neutrinos from theory of R-parity , 2010, 1010.3968.

[35]  W. Buchmuller Gravitino Dark Matter , 2009, 0910.1870.

[36]  M. Carena,et al.  Z′gauge bosons at the Fermilab Tevatron , 2004 .

[37]  V. Barger,et al.  Minimal gauged U(1) B-L model with spontaneous R parity violation. , 2008, Physical review letters.

[38]  M. González-Alonso,et al.  Gauge origin of M parity and the {mu} term in supersymmetry , 2011, 1109.1823.

[39]  A. Murayama,et al.  Radiative breaking of SU(2)R×U(1)B-L gauge symmetry induced by broken N=1 supergravity in a left-right symmetric model , 1985 .