Neutron-Star-Merger Equation of State

In this work, we discuss the dense matter equation of state (EOS) for the extreme range of conditions encountered in neutron stars and their mergers. The calculation of the properties of such an EOS involves modeling different degrees of freedom (such as nuclei, nucleons, hyperons, and quarks), taking into account different symmetries, and including finite density and temperature effects in a thermodynamically consistent manner. We begin by addressing subnuclear matter consisting of nucleons and a small admixture of light nuclei in the context of the excluded volume approach. We then turn our attention to supranuclear homogeneous matter as described by the Chiral Mean Field (CMF) formalism. Finally, we present results from realistic neutron-star-merger simulations performed using the CMF model that predict signatures for deconfinement to quark matter in gravitational wave signals.

[1]  S. Reddy,et al.  Confronting gravitational-wave observations with modern nuclear physics constraints , 2018, The European Physical Journal A.

[2]  M. Prakash,et al.  Dense matter equation of state for neutron star mergers , 2018, The European Physical Journal A.

[3]  K. Chatziioannou,et al.  Identifying a First-Order Phase Transition in Neutron-Star Mergers through Gravitational Waves. , 2018, Physical review letters.

[4]  L. J. Papenfort,et al.  Signatures of Quark-Hadron Phase Transitions in General-Relativistic Neutron-Star Mergers. , 2018, Physical review letters.

[5]  V. Dexheimer,et al.  Deconfinement phase transition in proto-neutron-star matter , 2018, Physical Review C.

[6]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[7]  Caltech,et al.  Open-source nuclear equation of state framework based on the liquid-drop model with Skyrme interaction , 2017, 1707.01527.

[8]  M. Hempel,et al.  Phase transitions in dense matter , 2017, 1704.03890.

[9]  C. Ott,et al.  A New Open-Source Nuclear Equation of State Framework based on the Liquid-Drop Model with Skyrme Interactions , 2017 .

[10]  C. Ott,et al.  Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants , 2016, 1612.06429.

[11]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[12]  Luciano Rezzolla,et al.  Implementation of a simplified approach to radiative transfer in general relativity , 2013, 1306.4953.

[13]  A Novel Approach to Model Hybrid Stars , 2013 .

[14]  M. Baldo,et al.  Properties of the nuclear medium , 2011, Reports on progress in physics. Physical Society.

[15]  M. Shibata,et al.  Effects of hyperons in binary neutron star mergers. , 2011, Physical review letters.

[16]  S. Schramm,et al.  Modeling Hybrid Stars with an SU(3) non-linear sigma model , 2010, 1006.0380.

[17]  Benno Willke,et al.  The third generation of gravitational wave observatories and their science reach , 2010 .

[18]  S. Schramm,et al.  Novel approach to modeling hybrid stars , 2009, 0901.1748.

[19]  Christian D. Ott,et al.  A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes , 2009, 0912.2393.

[20]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[21]  S. Schramm,et al.  Proto-Neutron and Neutron Stars in a Chiral SU(3) Model , 2008, 0802.1999.

[22]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[23]  Z. Fodor,et al.  The order of the quantum chromodynamics transition predicted by the standard model of particle physics , 2006, Nature.

[24]  Melvyn B. Davies,et al.  High-resolution calculations of merging neutron stars - III. Gamma-ray bursts , 2003, astro-ph/0306418.

[25]  S. Rosswog,et al.  High‐resolution calculations of merging neutron stars – II. Neutrino emission , 2003, astro-ph/0302301.

[26]  M. Baldo,et al.  THE NUCLEAR EQUATION OF STATE AND NEUTRON STAR STRUCTURE , 2000, nucl-th/0012014.

[27]  W. Greiner,et al.  Nuclei in a chiral SU(3) model , 1998, nucl-th/9806087.

[28]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[29]  V. Pandharipande,et al.  Spin-isospin structure and pion condensation in nucleon matter , 1997, nucl-th/9705013.

[30]  B. D. Serot,et al.  Relativistic mean-field theory and the high-density nuclear equation of state , 1996, nucl-th/9603037.

[31]  M. Ruffert,et al.  Coalescing neutron stars: A Step towards physical models. 1: Hydrodynamic evolution and gravitational wave emission , 1995, astro-ph/9509006.

[32]  Bao,et al.  Asymmetric nuclear matter and neutron star properties. , 1994, Physical review letters.

[33]  T. Ainsworth,et al.  The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations , 1987 .

[34]  D. Lamb,et al.  Physical properties of hot, dense matter: The general case , 1985 .

[35]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[36]  G. Uhlenbeck,et al.  The quantum theory of the non-ideal gas. II. Behaviour at low temperatures , 1937 .