Classification and recognition method of fundus images based on SE-DenseNet

With the growth of the aging population, the incidence of eye diseases is getting higher and higher. Traditional manual diagnosis has strong subjectivity and limitations. Computer-aided diagnosis can improve the accuracy of diagnosis while accelerating the diagnosis. The traditional convolutional neural network cannot fully obtain the effective features of the image, which makes the classification accuracy of the image low. The computer-aided diagnosis algorithm proposed in this paper integrates DenseNet and Squeeze-and-Excitation Networks (SENet) in deep learning based on image de-watermarking and data enhancement, while fully extracting and utilizing fundus images features while improving the network's global features information utilization. The experimental results show that the classification accuracy of the model in the fundus image is 0.9528. Compared with other convolutional networks, SEDenseNet achieves the highest accuracy.

[1]  Anjan Gudigar,et al.  Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images , 2018, Inf. Sci..

[2]  Dwarikanath Mahapatra,et al.  A novel hybrid approach for severity assessment of Diabetic Retinopathy in colour fundus images , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[3]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[4]  K Nirmala,et al.  HOG feature based SVM classification of glaucomatous fundus image with extraction of blood vessels , 2016, 2016 IEEE Annual India Conference (INDICON).

[5]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Hung T. Nguyen,et al.  Classification of diabetic retinopathy using neural networks , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  Alexandru Telea,et al.  An Image Inpainting Technique Based on the Fast Marching Method , 2004, J. Graphics, GPU, & Game Tools.