Polar Coding for Processes With Memory

We study polar coding for stochastic processes with memory. For example, a process may be defined by the joint distribution of the input and output of a channel. The memory may be present in the channel, the input, or both. We show that the <inline-formula> <tex-math notation="LaTeX">${\psi }$ </tex-math></inline-formula>-mixing processes polarize under the standard Arıkan transform, under a mild condition. We further show that the rate of polarization of the <italic>low-entropy</italic> synthetic channels is roughly <inline-formula> <tex-math notation="LaTeX">${O}({2}^{-\sqrt {N}})$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">${N}$ </tex-math></inline-formula> is the blocklength. That is, essentially, the same rate as in the memoryless case.

[1]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[2]  Richard C. Bradley,et al.  Introduction to strong mixing conditions , 2007 .

[3]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[4]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[5]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[6]  M. Nicol THE ERGODIC THEORY OF DISCRETE SAMPLE PATHS (Graduate Studies in Mathematics 13) By P AUL C. S HIELDS : 249 pp., US$39.00, ISBN 0 8218 0477 4 (American Mathematical Society, 1996). , 1999 .

[7]  E. O. Elliott Estimates of error rates for codes on burst-noise channels , 1963 .

[8]  Ido Tal,et al.  Fast Polarization for Processes With Memory , 2017, IEEE Transactions on Information Theory.

[9]  Eren Sasoglu,et al.  Polarization and Polar Codes , 2012, Found. Trends Commun. Inf. Theory.

[10]  Israel Bar-David,et al.  Capacity and coding for the Gilbert-Elliot channels , 1989, IEEE Trans. Inf. Theory.

[11]  P. Shields The Ergodic Theory of Discrete Sample Paths , 1996 .

[12]  Richard C. Bradley,et al.  Equivalent mixing conditions for Markov chains , 1999 .

[13]  Rongke Liu,et al.  Construction of polar codes for channels with memory , 2015, 2015 IEEE Information Theory Workshop - Fall (ITW).

[14]  Eren Sasoglu Polar Coding Theorems for Discrete Systems , 2011 .

[15]  Ido Tal A Simple Proof of Fast Polarization , 2017, IEEE Transactions on Information Theory.

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .