Real Number Calculations and Theorem Proving

Wouldn’t it be nice to be able to conveniently use ordinary real number expressions within proof assistants? In this paper we outline how this can be done within a theorem proving framework. First, we formally establish upper and lower bounds for trigonometric and transcendental functions. Then, based on these bounds, we develop a rational interval arithmetic where real number calculations can be performed in an algebraic setting. This pragmatic approach has been implemented as a strategy in PVS. The strategy provides a safe way to perform explicit calculations over real numbers in formal proofs.

[1]  Guillaume Melquiond,et al.  Generating formally certified bounds on values and round-off errors , 2004 .

[2]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .

[3]  Alberto Ciaffaglione,et al.  Certified reasoning on real numbers and objects in co-inductive type theory. (Raisonnement certifié sur les nombres réels et les objets en théorie des types co-inductifs) , 2003 .

[4]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[5]  Micaela Mayero,et al.  Formalisation et automatisation de preuves en analyses réelle et numérique , 2001 .

[6]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  J. Harrison Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .

[9]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[10]  Guillaume Melquiond,et al.  Guaranteed proofs using interval arithmetic , 2005, 17th IEEE Symposium on Computer Arithmetic (ARITH'05).

[11]  M. Niqui,et al.  Formalising Exact Arithmetic. Representations, Algorithms and Proofs , 2004 .

[12]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[13]  Ernst Specker,et al.  Nicht konstruktiv beweisbare Sätze der Analysis , 1949, Journal of Symbolic Logic.

[14]  Harald Ruess,et al.  Case Studies in Meta-Level Theorem Proving , 1998, TPHOLs.

[15]  Victor Carreño,et al.  Formal verification of conflict detection algorithms , 2001, International Journal on Software Tools for Technology Transfer.

[16]  Bruno Dutertre,et al.  Elements of Mathematical Analysis in PVS , 1996, TPHOLs.

[17]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[18]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.

[19]  Samuel Boutin,et al.  Using Reflection to Build Efficient and Certified Decision Procedures , 1997, TACS.

[20]  Jacques D. Fleuriot,et al.  Mechanizing Nonstandard Real Analysis , 2000 .

[21]  R. Boyer,et al.  Mechanically verifying real-valued algorithms in acl2 , 1999 .

[22]  Hanne Gottliebsen Automated theorem proving for mathematics : real analysis in PVS , 2002 .

[23]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[24]  Valerie Menissier-Morain Menissier Arithmetique exacte : conception, algorithmique et performances d'une implementation informatique en precision arbitraire , 1994 .