Resource convertibility and ordered commutative monoids

Resources and their use and consumption form a central part of our life. Many branches of science and engineering are concerned with the question of which given resource objects can be converted into which target resource objects. For example, information theory studies the conversion of a noisy communication channel instance into an exchange of information. Inspired by work in quantum information theory, we develop a general mathematical toolbox for this type of question. The convertibility of resources into other ones and the possibility of combining resources is accurately captured by the mathematics of ordered commutative monoids. As an intuitive example, we consider chemistry, where chemical reaction equations such as \[ \mathrm{2H_2 + O_2} \to \mathrm{2H_2O} \] are concerned both with a convertibility relation "$\to$" and a combination operation "$+$". We study ordered commutative monoids from an algebraic and functional-analytic perspective and derive a wealth of results which should have applications to concrete resource theories, such as a formula for rates of conversion. As a running example showing that ordered commutative monoids are also of purely mathematical interest, we exemplify our results with the ordered commutative monoid of graphs. While closely related to both Girard's linear logic and to Deutsch's constructor theory, our framework also produces results very reminiscent of the utility theorem of von Neumann and Morgenstern in decision theory and of a theorem of Lieb and Yngvason on thermodynamics. Concerning pure algebra, our observation is that some pieces of algebra can be developed in a context in which equality is not necessarily symmetric, i.e. in which the equality relation is replaced by an ordering relation. For example, notions like cancellativity or torsion-freeness are still sensible and very natural concepts in our ordered setting.

[1]  P. Kleingeld,et al.  The Stanford Encyclopedia of Philosophy , 2013 .

[2]  J. Renes,et al.  Beyond heat baths: Generalized resource theories for small-scale thermodynamics. , 2014, Physical review. E.

[3]  Chiara Marletto,et al.  Constructor theory of life , 2014, Journal of The Royal Society Interface.

[4]  Ion Nechita,et al.  Catalytic Majorization and $$\ell_p$$ Norms , 2008 .

[5]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[6]  E. Lieb,et al.  A Guide to Entropy and the Second Law of Thermodynamics , 1998, math-ph/9805005.

[7]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[8]  André Thess The Entropy Principle: Thermodynamics for the Unsatisfied , 2011 .

[9]  Mikael Rørdam,et al.  Extending states on preordered semigroups and the existence of quasitraces on C∗-algebras , 1992 .

[10]  David M. Kreps Notes On The Theory Of Choice , 1988 .

[11]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[12]  Stefan Baumgärtner,et al.  An axiomatic approach to decision under Knightian uncertainty , 2013 .

[13]  E. Scheinerman,et al.  Fractional Graph Theory: A Rational Approach to the Theory of Graphs , 1997 .

[14]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[15]  David E. Roberson,et al.  Quantum homomorphisms , 2016, J. Comb. Theory, Ser. B.

[16]  Mark Tomforde,et al.  Vector Spaces with an Order Unit , 2007, 0712.2613.

[17]  Masaru Shirahata,et al.  A sequent calculus for compact closed categories , 2000 .

[18]  A. M. Murray The strong perfect graph theorem , 2019, 100 Years of Math Milestones.

[19]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[20]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[21]  David E. Roberson,et al.  Variations on a Theme: Graph Homomorphisms , 2013 .

[22]  V. Kandarpa On Commutative Δ-Semigroups , 2016 .

[23]  R. Spekkens,et al.  The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.

[24]  Everett W. Howe A New Proof of Erdos's Theorem on Monotone Multiplicative Functions , 1986 .

[25]  K. Goodearl Partially ordered abelian groups with interpolation , 1986 .

[26]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[27]  O. Nakada,et al.  PARTIALLY ORDERED ABELIAN SEMIGROUPS I. ON THE EXTENSION OF THE STRONG PARTIAL ORDER DEFINED ON ABELIAN SEMIGROUPS , 1951 .

[28]  Tim Netzer,et al.  Closures of quadratic modules , 2009, 0904.1468.

[29]  G. Vidal On the characterization of entanglement , 1998 .

[30]  S. Semmes Topological Vector Spaces , 2003 .

[31]  Syed M. Fakhruddin Absolute flatness and amalgams in pomonoids , 1986 .

[32]  Martin Feinberg,et al.  Thermodynamics based on the Hahn-Banach Theorem: The Clausius inequality , 1983 .

[33]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[34]  Elliott H. Lieb,et al.  The Mathematical Structure of the Second Law of Thermodynamics , 2001 .

[35]  A. Pultr,et al.  Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .

[36]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[37]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[38]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[39]  G. Nemhauser,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2014 .

[40]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[41]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[42]  C. Berge Fractional Graph Theory , 1978 .

[43]  David E. Roberson,et al.  Bounds on Entanglement Assisted Source-channel Coding Via the Lovász Theta Number and Its Variants , 2014, TQC.

[44]  George A. Elliott,et al.  K-theory , 1999 .

[45]  Everett W. Howe A new proof of Erdo¨s's theorem on monotone , 1986 .

[46]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  A. Harrow Entanglement spread and clean resource inequalities , 2009, 0909.1557.

[48]  M. Klimesh Inequalities that Collectively Completely Characterize the Catalytic Majorization Relation , 2007, 0709.3680.

[49]  David N. Yetter,et al.  FROBENIUS ALGEBRAS AND 2D TOPOLOGICAL QUANTUM FIELD THEORIES (London Mathematical Society Student Texts 59) , 2004 .

[50]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[51]  E. Lieb,et al.  Entropy meters and the entropy of non-extensive systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[53]  Debbie W. Leung,et al.  Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.

[54]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[55]  David E. Roberson,et al.  Sabidussi versus Hedetniemi for three variations of the chromatic number , 2013, Comb..

[56]  M. Darnel Theory of Lattice-Ordered Groups , 1994 .

[57]  J. Golan Semirings and their applications , 1999 .

[58]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[59]  R. Spekkens,et al.  Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames , 2013, 1312.0680.

[60]  C. Nadel Abstract And Concrete Categories The Joy Of Cats , 2016 .

[61]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[62]  K. I. Rosenthal Quantales and their applications , 1990 .

[63]  Céline Moreira Dos Santos,et al.  Decomposition of strongly separative monoids , 2002 .

[64]  D. H. Hyers Linear topological spaces , 1945 .

[65]  Elliott H. Lieb,et al.  A Fresh Look at Entropy and the Second Law of Thermodynamics , 2000 .

[66]  David E. Roberson,et al.  Graph Homomorphisms for Quantum Players , 2014, TQC.

[67]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[68]  F. Wehrung Injective positively ordered monoids II , 2005 .

[69]  Friedrich Wehrung,et al.  Injective positively ordered monoids I , 1992 .

[70]  A. J. Jong,et al.  Current Developments in Mathematics, 2001 , 2002 .

[71]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[72]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[73]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[74]  Bas Luttik A Unique Decomposition Theorem for Ordered Monoids with Applications in Process Theory , 2003, MFCS.

[75]  D. Janzing,et al.  Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law , 2000, quant-ph/0002048.

[76]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[77]  James G. Raftery,et al.  Corrigendum: Residuation in Commutative Ordered Monoids with Minimal Zero , 2000, Reports Math. Log..

[78]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[79]  Han Zhang,et al.  Order Algebras as Models of Linear Logic , 2004, Stud Logica.

[80]  A. M. W. Glass,et al.  Partially Ordered Groups , 1999 .

[81]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[82]  Guifre Vidal Entanglement monotones , 1998, quant-ph/9807077.

[83]  André Thess The Entropy Principle , 2011 .

[84]  David Deutsch,et al.  Constructor theory of information , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  Roberto Grossi,et al.  Mathematical Foundations Of Computer Science 2003 , 2003 .

[86]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[87]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[88]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[89]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[90]  R. Tourky,et al.  Cones and duality , 2007 .

[91]  Axel Poigné,et al.  Basic category theory , 1993, LICS 1993.

[92]  Mark M. Wilde,et al.  Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.

[93]  Niovi Kehayopulu,et al.  On Separative Ordered Semigroups , 1998 .

[94]  David Deutsch Constructor theory , 2013, Synthese.

[95]  Yuan Feng,et al.  Multiple-copy entanglement transformation and entanglement catalysis , 2004, quant-ph/0404148.

[96]  E. Lieb,et al.  The physics and mathematics of the second law of thermodynamics (Physics Reports 310 (1999) 1–96)☆ , 1997, cond-mat/9708200.

[97]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[98]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[99]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[100]  David E. Roberson,et al.  Bounds on Entanglement-Assisted Source-Channel Coding via the Lovász \(\vartheta \) Number and Its Variants , 2013, IEEE Transactions on Information Theory.

[101]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[102]  Andreas J. Winter,et al.  The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.

[103]  R. Archbold AN INTRODUCTION TO K-THEORY FOR C*-ALGEBRAS (London Mathematical Society Student Texts 49) By M. RØRDAM, F. LARSEN and N. LAUSTSEN: 242 pp., £16.95 (LMS members' price £12.71), ISBN 0-521-78944-3 (Cambridge University Press, 2000). , 2002 .

[104]  Ion Nechita,et al.  Catalytic majorization and ` p norms , 2017 .