Fast spectral methods for the Fokker-Planck-Landau collision operator
暂无分享,去创建一个
[1] L. Pareschi,et al. On the stability of spectral methods for the homogeneous Boltzmann equation , 2000 .
[2] Giuseppe Toscani,et al. Méthode spectrale rapide pour l'équation de Fokker–Planck–Landau , 2000 .
[3] G. Russo,et al. Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..
[4] Cédric Villani,et al. On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .
[5] I. F. Potapenko,et al. The completely conservative difference schemes for the nonlinear Landau—Fokker—Planck equation , 1999 .
[6] Stéphane Cordier,et al. Numerical Analysis of Conservative and Entropy Schemes for the Fokker--Planck--Landau Equation , 1999 .
[7] F. Zaitsev,et al. Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations , 1998 .
[8] Cédric Villani,et al. On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .
[9] Stéphane Cordier,et al. Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .
[10] A. Medovikov. High order explicit methods for parabolic equations , 1998 .
[11] Mohammed Lemou,et al. Multipole expansions for the Fokker-Planck-Landau operator , 1998 .
[12] Pierre Degond,et al. Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .
[13] Lorenzo Pareschi,et al. A Fourier spectral method for homogeneous boltzmann equations , 1996 .
[14] Pierre Degond,et al. An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .
[15] E. M. Epperlein,et al. Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .
[16] Pierre Degond,et al. THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .
[17] Laurent Desvillettes,et al. On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .
[18] A. A. Arsen’ev,et al. ON THE CONNECTION BETWEEN A SOLUTION OF THE BOLTZMANN EQUATION AND A SOLUTION OF THE LANDAU-FOKKER-PLANCK EQUATION , 1991 .
[19] Y. Berezin,et al. Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .
[20] Edward W. Larsen,et al. Discretization methods for one-dimensional Fokker-Planck operators , 1985 .
[21] J. S. Chang,et al. A practical difference scheme for Fokker-Planck equations☆ , 1970 .
[22] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[23] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .
[24] T. Ohwada. Higher Order Approximation Methods for the Boltzmann Equation , 1998 .
[25] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[26] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .