Fast spectral methods for the Fokker-Planck-Landau collision operator

Abstract In this paper we present a new spectral method for the fast evaluation of the Fokker–Planck–Landau (FPL) collision operator. The method allows us to obtain spectrally accurate numerical solutions with simply O ( n log 2 n ) operations in contrast with the usual O ( n 2 ) cost of a deterministic scheme. We show that the method preserves the total mass whereas momentum and energy are approximated with spectral accuracy. Numerical results for the FPL equation for Maxwell molecules and for Coulomb interactions in two and three dimensions in velocity space are also given.

[1]  L. Pareschi,et al.  On the stability of spectral methods for the homogeneous Boltzmann equation , 2000 .

[2]  Giuseppe Toscani,et al.  Méthode spectrale rapide pour l'équation de Fokker–Planck–Landau , 2000 .

[3]  G. Russo,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[4]  Cédric Villani,et al.  On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .

[5]  I. F. Potapenko,et al.  The completely conservative difference schemes for the nonlinear Landau—Fokker—Planck equation , 1999 .

[6]  Stéphane Cordier,et al.  Numerical Analysis of Conservative and Entropy Schemes for the Fokker--Planck--Landau Equation , 1999 .

[7]  F. Zaitsev,et al.  Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations , 1998 .

[8]  Cédric Villani,et al.  On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .

[9]  Stéphane Cordier,et al.  Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .

[10]  A. Medovikov High order explicit methods for parabolic equations , 1998 .

[11]  Mohammed Lemou,et al.  Multipole expansions for the Fokker-Planck-Landau operator , 1998 .

[12]  Pierre Degond,et al.  Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .

[13]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[14]  Pierre Degond,et al.  An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .

[15]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[16]  Pierre Degond,et al.  THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .

[17]  Laurent Desvillettes,et al.  On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .

[18]  A. A. Arsen’ev,et al.  ON THE CONNECTION BETWEEN A SOLUTION OF THE BOLTZMANN EQUATION AND A SOLUTION OF THE LANDAU-FOKKER-PLANCK EQUATION , 1991 .

[19]  Y. Berezin,et al.  Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .

[20]  Edward W. Larsen,et al.  Discretization methods for one-dimensional Fokker-Planck operators , 1985 .

[21]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[22]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[23]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[24]  T. Ohwada Higher Order Approximation Methods for the Boltzmann Equation , 1998 .

[25]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[26]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .