MOLA: a bootable, self-configuring system for virtual screening using AutoDock4/Vina on computer clusters

BackgroundVirtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters.ImplementationMOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections.ConclusionMOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.

[1]  Bert L. de Groot,et al.  Ligand docking and binding site analysis with PyMOL and Autodock/Vina , 2010, J. Comput. Aided Mol. Des..

[2]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[3]  Gerard Pujadas,et al.  BDT: an easy-to-use front-end application for automation of massive docking tasks and complex docking strategies with AutoDock , 2006, Bioinform..

[4]  Gerard Pujadas,et al.  Protein-ligand Docking: A Review of Recent Advances and Future Perspectives , 2008 .

[5]  I. Wilson,et al.  Virtual screening of human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase against the NCI diversity set by use of AutoDock to identify novel nonfolate inhibitors. , 2004, Journal of medicinal chemistry.

[6]  Pedro Alexandrino Fernandes,et al.  Protein–ligand docking: Current status and future challenges , 2006, Proteins.

[7]  Jaques Reifman,et al.  DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0 , 2008, Chemistry Central journal.

[8]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[9]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[10]  Jaques Reifman,et al.  DOVIS: an implementation for high-throughput virtual screening using AutoDock , 2008, BMC Bioinformatics.

[11]  Greg Burns,et al.  LAM: An Open Cluster Environment for MPI , 2002 .

[12]  J. An,et al.  Structure-based virtual screening of chemical libraries for drug discovery. , 2006, Current opinion in chemical biology.

[13]  S James Adelstein,et al.  Molecular-docking-guided design, synthesis, and biologic evaluation of radioiodinated quinazolinone prodrugs. , 2007, Journal of medicinal chemistry.