Trusted Noise in Continuous-Variable Quantum Key Distribution: A Threat and a Defense

We address the role of the phase-insensitive trusted preparation and detection noise in the security of a continuous-variable quantum key distribution, considering the Gaussian protocols on the basis of coherent and squeezed states and studying them in the conditions of Gaussian lossy and noisy channels. The influence of such a noise on the security of Gaussian quantum cryptography can be crucial, even despite the fact that a noise is trusted, due to a strongly nonlinear behavior of the quantum entropies involved in the security analysis. We recapitulate the known effect of the preparation noise in both direct and reverse-reconciliation protocols, as well as the detection noise in the reverse-reconciliation scenario. As a new result, we show the negative role of the trusted detection noise in the direct-reconciliation scheme. We also describe the role of the trusted preparation or detection noise added at the reference side of the protocols in improving the robustness of the protocols to the channel noise, confirming the positive effect for the coherent-state reverse-reconciliation protocol. Finally, we address the combined effect of trusted noise added both in the source and the detector.

[1]  N. Cerf,et al.  Quantum distribution of Gaussian keys using squeezed states , 2000, quant-ph/0008058.

[2]  T. Ralph,et al.  Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[3]  Vladyslav C. Usenko,et al.  Large-alphabet quantum key distribution with two-mode coherently correlated beams , 2005 .

[4]  Anthony Leverrier,et al.  Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation , 2009, 0912.4132.

[5]  Quantum channel using photon number correlated twin beams. , 2003, Optics express.

[6]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[7]  Fabian Furrer,et al.  Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle , 2014, 1405.5965.

[8]  J Fiurásek Optical implementation of continuous-variable quantum cloning machines. , 2001, Physical review letters.

[9]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[10]  Stefano Pirandola,et al.  Quantum teleportation with continuous variables: A survey , 2006 .

[11]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.

[12]  Vladyslav C. Usenko,et al.  Unidimensional continuous-variable quantum key distribution , 2015, 1504.07093.

[13]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[14]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Romain Alléaume,et al.  Multidimensional reconciliation for continuous-variable quantum key distribution , 2007, 2008 IEEE International Symposium on Information Theory.

[16]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[17]  B. Yurke,et al.  Probing the phase coherence of parametrically generated photon pairs: A new test of Bell's inequalities. , 1988, Physical review. A, General physics.

[18]  Christian Weedbrook,et al.  Device-independent quantum cryptography for continuous variables , 2014, 1405.6983.

[19]  Wanyi Gu,et al.  Continuous-variable measurement-device-independent quantum key distribution using squeezed states , 2014, 1406.0973.

[20]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[21]  Quantum communication with photon-number entangled states and realistic photodetection , 2010, 1001.1704.

[22]  N. Cerf,et al.  Optimal N-to-M cloning of conjugate quantum variables , 2000 .

[23]  John Preskill,et al.  Secure quantum key distribution using squeezed states , 2001 .

[24]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[25]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[26]  Wanyi Gu,et al.  Security of two-way continuous-variable quantum key distribution with source noise , 2014 .

[27]  Gerd Leuchs,et al.  Continuous-variable quantum key distribution using polarization encoding and post selection , 2004, quant-ph/0403064.

[28]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[29]  Frédéric Grosshans Collective attacks and unconditional security in continuous variable quantum key distribution. , 2005, Physical review letters.

[30]  A. Furusawa,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[31]  Seth Lloyd,et al.  Quantum cryptography approaching the classical limit. , 2010, Physical review letters.

[32]  E. Diamanti,et al.  Analysis of Imperfections in Practical Continuous-Variable Quantum Key Distribution , 2012, 1206.6357.

[33]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[34]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.

[35]  Radim Filip,et al.  Long-distance continuous-variable quantum key distribution with efficient channel estimation , 2014 .

[36]  Yu Wang,et al.  Continuous variable quantum key distribution based on optical entangled states without signal modulation , 2009, 1109.2495.

[37]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[38]  Konrad Banaszek,et al.  TESTING QUANTUM NONLOCALITY IN PHASE SPACE , 1999 .

[39]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[40]  Anthony Leverrier,et al.  Composable security proof for continuous-variable quantum key distribution with coherent States. , 2014, Physical review letters.

[41]  L. Liang,et al.  Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems , 2013, 1303.6043.

[42]  S. Lloyd,et al.  High-rate quantum cryptography in untrusted networks , 2013, 1312.4104.

[43]  N. Lutkenhaus,et al.  Security of coherent-state quantum cryptography in the presence of Gaussian noise , 2006, quant-ph/0608015.

[44]  Stefano Pirandola,et al.  Two-way quantum cryptography at different wavelengths , 2013, 1309.7973.

[45]  Vladyslav C. Usenko,et al.  Quantum communication with macroscopically bright nonclassical states. , 2015, Optics express.

[46]  Radim Filip Continuous-variable quantum key distribution with noisy coherent states , 2008 .

[47]  Multiphoton communication in lossy channels with photon-number entangled states , 2006, quant-ph/0612028.

[48]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[49]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[50]  Jörn Müller-Quade,et al.  Composability in quantum cryptography , 2009, ArXiv.

[51]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[52]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[53]  Stefano Pirandola,et al.  Quantum discord as a resource for quantum cryptography , 2013, Scientific Reports.

[54]  E. Diamanti,et al.  Preventing Calibration Attacks on the Local Oscillator in Continuous-Variable Quantum Key Distribution , 2013, 1304.7024.

[55]  N. Cerf,et al.  Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution , 2012 .

[56]  Mu-Sheng Jiang,et al.  Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator , 2014 .

[57]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[58]  G Leuchs,et al.  Quantum key distribution with bright entangled beams. , 2002, Physical review letters.

[59]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[60]  G. Guo,et al.  Quantum hacking on quantum key distribution using homodyne detection , 2014, 1402.6921.

[61]  N. Gisin,et al.  Quantum cryptography , 1998 .

[62]  J. Cirac,et al.  Extremality of Gaussian quantum states. , 2005, Physical review letters.

[63]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[64]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[65]  P. Grangier,et al.  Finite-size analysis of a continuous-variable quantum key distribution , 2010, 1005.0339.

[66]  G. Guo,et al.  Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack , 2013, 1302.0090.

[67]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[68]  M. Chekhova,et al.  Generation and direct detection of broadband mesoscopic polarization-squeezed vacuum. , 2009, Physical review letters.

[69]  Christian Weedbrook,et al.  Continuous-variable quantum key distribution with entanglement in the middle , 2012, 1205.1497.

[70]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[71]  T.C.Ralph Security of Continuous Variable Quantum Cryptography , 2000 .

[72]  Frédéric Grosshans,et al.  Continuous-variable quantum cryptography is secure against non-Gaussian attacks. , 2004, Physical review letters.

[73]  N J Cerf,et al.  Optimal cloning of coherent states with a linear amplifier and beam splitters. , 2000, Physical review letters.

[74]  A. Acín,et al.  Security bounds for continuous variables quantum key distribution. , 2004, Physical review letters.

[75]  M. Barbieri,et al.  Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier , 2012, 1205.0959.

[76]  Xiang Peng,et al.  Source monitoring for continuous-variable quantum key distribution , 2012 .

[77]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[78]  Radim Filip,et al.  Squeezed-state quantum key distribution upon imperfect reconciliation , 2011, 1111.2311.

[79]  Jaromir Fiurasek Improving the fidelity of continuous-variable teleportation via local operations , 2002 .

[80]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[81]  Vladyslav C. Usenko,et al.  Feasibility of continuous-variable quantum key distribution with noisy coherent states , 2009, 0904.1694.

[82]  Radim Filip,et al.  Entanglement-based continuous-variable quantum key distribution with multimode states and detectors , 2014, 1412.6046.

[83]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[84]  A. Serafini,et al.  Quantifying decoherence in continuous variable systems , 2005 .

[85]  S. Pirandola,et al.  Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks , 2017, Physical Review A.

[86]  Nicolas J. Cerf,et al.  Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables , 2003, Quantum Inf. Comput..

[87]  Xiang Peng,et al.  Continuous-variable quantum key distribution with Gaussian source noise , 2011, 1101.0871.

[88]  B Kraus,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[89]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[90]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[91]  Peng Huang,et al.  Bound on Noise of Coherent Source for Secure Continuous-Variable Quantum Key Distribution , 2013, International Journal of Theoretical Physics.

[92]  Radim Filip,et al.  Continuous variable quantum key distribution with modulated entangled states , 2011, Nature Communications.

[93]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[94]  Stefano Pirandola,et al.  Continuous-Variable Quantum Key Distribution using Thermal States , 2011, 1110.4617.

[95]  Maria Bondani,et al.  Experimental joint signal-idler quasidistributions and photon-number statistics for mesoscopic twin beams , 2007, 0708.2216.

[96]  Mu-Sheng Jiang,et al.  Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol , 2013 .

[97]  Sébastien Kunz-Jacques,et al.  Robust Shot Noise Measurement for CVQKD , 2014 .

[98]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[99]  Canada,et al.  Schemes for the observation of photon correlation functions in circuit QED with linear detectors , 2010, 1004.3987.

[100]  T Franz,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2011, Physical review letters.

[101]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[102]  Renato Renner,et al.  Security of continuous-variable quantum key distribution against general attacks. , 2012, Physical review letters.

[103]  Vladyslav C. Usenko,et al.  Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels , 2012, 1208.4307.

[104]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[105]  S. Lloyd,et al.  Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. , 2008, Physical review letters.

[106]  W. Gu,et al.  Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier , 2014 .

[107]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[108]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[109]  Elliott H. Lieb,et al.  Entropy inequalities , 1970 .

[110]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[111]  Sébastien Kunz-Jacques,et al.  High performance error correction for quantum key distribution using polar codes , 2014, Quantum Inf. Comput..

[112]  Raúl García-Patrón,et al.  Continuous-variable quantum key distribution protocols over noisy channels. , 2008, Physical review letters.

[113]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[114]  N. Lutkenhaus,et al.  Efficiency of coherent-state quantum cryptography in the presence of loss: Influence of realistic error correction , 2005, quant-ph/0512013.

[115]  Sébastien Kunz-Jacques,et al.  Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation , 2011, Physical Review A.

[116]  E. Diamanti,et al.  Field test of a continuous-variable quantum key distribution prototype , 2008, 0812.3292.

[117]  R. Renner Symmetry of large physical systems implies independence of subsystems , 2007 .

[118]  Nathan Walk,et al.  Security of continuous-variable quantum cryptography with Gaussian postselection , 2013 .

[119]  Vikram Sharma,et al.  No-switching quantum key distribution using broadband modulated coherent light. , 2005, Physical review letters.

[120]  L. Knoll,et al.  Continuous-variable quantum teleportation through lossy channels , 2002 .

[121]  Konrad Banaszek,et al.  Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation , 1998 .

[122]  N. Gisin,et al.  Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. , 2010, Physical review letters.

[123]  Alessio Serafini,et al.  LETTER TO THE EDITOR: Symplectic invariants, entropic measures and correlations of Gaussian states , 2003, quant-ph/0307073.

[124]  Seth Lloyd,et al.  Continuous Variable Quantum Cryptography using Two-Way Quantum Communication , 2006, ArXiv.

[125]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[126]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[127]  J. Cirac,et al.  De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. , 2008, Physical review letters.

[128]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[129]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[130]  E. Diamanti,et al.  Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers , 2008, 0812.4314.

[131]  Alexandre Blais,et al.  Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors , 2011 .

[132]  G. S. Vernam,et al.  Cipher Printing Telegraph Systems For Secret Wire and Radio Telegraphic Communications , 1926, Transactions of the American Institute of Electrical Engineers.