Honey bees mating optimization algorithm for the Euclidean traveling salesman problem

This paper introduces a new hybrid algorithmic nature inspired approach based on Honey Bees Mating Optimization for successfully solving the Euclidean Traveling Salesman Problem. The proposed algorithm for the solution of the Traveling Salesman Problem, the Honey Bees Mating Optimization (HBMOTSP), combines a Honey Bees Mating Optimization (HBMO) algorithm, the Multiple Phase Neighborhood Search-Greedy Randomized Adaptive Search Procedure (MPNS-GRASP) algorithm and the Expanding Neighborhood Search Strategy. Besides these two procedures, the proposed algorithm has, also, two additional main innovative features compared to other Honey Bees Mating Optimization algorithms concerning the crossover operator and the workers. The main contribution of this paper is that it shows that the HBMO can be used in hybrid synthesis with other metaheuristics for the solution of the TSP with remarkable results both to quality and computational efficiency. The proposed algorithm was tested on a set of 74 benchmark instances from the TSPLIB and in all but eleven instances the best known solution has been found. For the rest instances the quality of the produced solution deviates less than 0.1% from the optimum.

[1]  Yanchun Liang,et al.  Particle swarm optimization-based algorithms for TSP and generalized TSP , 2007, Inf. Process. Lett..

[2]  H A Abbass,et al.  MARRIAGE IN HONEY-BEE OPTIMIZATION (MBO): A HAPLOMETROSIS POLYGYNOUS SWARMING APPROACH , 2001 .

[3]  David Pisinger,et al.  Routing and scheduling problems , 2011 .

[4]  Yves Rochat,et al.  Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.

[5]  Panos M. Pardalos,et al.  A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem , 2005, J. Comb. Optim..

[6]  Heitor Silvério Lopes,et al.  A hybrid particle swarm optimization model for the traveling salesman problem , 2005 .

[7]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[8]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[9]  Nirwan Ansari,et al.  Computational Intelligence for Optimization , 1996, Springer US.

[10]  Marco César Goldbarg,et al.  Particle Swarm for the Traveling Salesman Problem , 2006, EvoCOP.

[11]  Shimin Shan,et al.  Mean-Contribution Ant System: An Improved Version of Ant Colony Optimization for Traveling Salesman Problem , 2006, SEAL.

[12]  William J. Cook,et al.  Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003, INFORMS Journal on Computing.

[13]  Yong Chen,et al.  Optimized annealing of traveling salesman problem from the nth-nearest-neighbor distribution , 2006, cond-mat/0603237.

[14]  José Ignacio Hidalgo,et al.  A hybrid heuristic for the traveling salesman problem , 2001, IEEE Trans. Evol. Comput..

[15]  Xin-She Yang,et al.  Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms , 2005, IWINAC.

[16]  F. Glover,et al.  Local Search and Metaheuristics , 2007 .

[17]  Cheng-Yan Kao,et al.  An evolutionary algorithm for large traveling salesman problems , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[18]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[19]  E. D. Taillard,et al.  Ant Systems , 1999 .

[20]  Habiba Drias,et al.  Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem , 2005, IWANN.

[21]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[22]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[23]  Lale Özbakır,et al.  Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem , 2007 .

[24]  Panos M. Pardalos,et al.  Expanding Neighborhood GRASP for the Traveling Salesman Problem , 2005, Comput. Optim. Appl..

[25]  Daniel J. Rosenkrantz,et al.  An analysis of several heuristics for the traveling salesman problem , 2013, Fundamental Problems in Computing.

[26]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[27]  Omid Bozorg Haddad,et al.  Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization , 2006 .

[28]  G. Laporte The traveling salesman problem: An overview of exact and approximate algorithms , 1992 .

[29]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[30]  Maria Teresinha Arns Steiner,et al.  A new approach to solve the traveling salesman problem , 2007, Neurocomputing.

[31]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[32]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[33]  David S. Johnson,et al.  Experimental Analysis of Heuristics for the STSP , 2007 .

[34]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[35]  Robert G. Reynolds,et al.  Memorial tribute to Dr. Michael Conrad , 2001, IEEE Trans. Evol. Comput..

[36]  Yanchun Liang,et al.  A novel quantum swarm evolutionary algorithm and its applications , 2007, Neurocomputing.

[37]  Aybars Uur,et al.  Path planning on a cuboid using genetic algorithms , 2008, Inf. Sci..

[38]  Thomas Stützle,et al.  Parallel Ant Colony Optimization for the Traveling Salesman Problem , 2006, ANTS Workshop.

[39]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[40]  Moritoshi Yasunaga,et al.  Implementation of an Effective Hybrid GA for Large-Scale Traveling Salesman Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Zhen Jin,et al.  An new self-organizing maps strategy for solving the traveling salesman problem , 2006 .

[42]  Hussein A. Abbass,et al.  A Monogenous MBO Approach to Satisfiability , 2001 .

[43]  Martin Zachariasen,et al.  Tabu Search on the Geometric Traveling Salesman Problem , 1996 .

[44]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[45]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[46]  D. Corneil,et al.  Efficient cluster compensation for lin-kernighan heuristics , 1999 .

[47]  Takao Enkawa,et al.  A self‐organizing neural network approach for multiple traveling salesman and vehicle routing problems , 1999 .

[48]  Leandro Nunes de Castro,et al.  A self-organizing neural network using ideas from the immune system to solve the traveling salesman problem , 2009, Inf. Sci..

[49]  Fred Glover,et al.  Tabu Search: A Tutorial , 1990 .

[50]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[51]  Liangsheng Qu,et al.  A Synergetic Approach to Genetic Algorithms for Solving Traveling Salesman Problem , 1999, Inf. Sci..

[52]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[53]  Panos M. Pardalos,et al.  Multiple phase neighborhood Search—GRASP based on Lagrangean relaxation, random backtracking Lin–Kernighan and path relinking for the TSP , 2009, J. Comb. Optim..

[54]  Jeng-Shyang Pan,et al.  Ant colony system with communication strategies , 2004, Inf. Sci..

[55]  Cheng-Fa Tsai,et al.  A new hybrid heuristic approach for solving large traveling salesman problem , 2004, Inf. Sci..

[56]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[57]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[58]  Michel Gendreau,et al.  GENI Ants for the Traveling Salesman Problem , 2004, Ann. Oper. Res..

[59]  Barry J. Adams,et al.  Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation , 2007, J. Frankl. Inst..

[60]  Gilbert Laporte,et al.  New Insertion and Postoptimization Procedures for the Traveling Salesman Problem , 1992, Oper. Res..

[61]  Yue Zhang,et al.  BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior , 2004, ANTS Workshop.

[62]  Ahmed Fahmy,et al.  A proof of convergence for Ant algorithms , 2004, Inf. Sci..

[63]  Hussein A. Abbass,et al.  A True Annealing Approach to the Marriage in Honey-Bees Optimization Algorithm , 2003, Int. J. Comput. Intell. Appl..

[64]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[65]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[66]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[67]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[68]  Ning Zhong,et al.  A Hybrid Discrete Particle Swarm Optimization for the Traveling Salesman Problem , 2006, SEAL.

[69]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[70]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[71]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[72]  Ali Maroosi,et al.  Application of honey-bee mating optimization algorithm on clustering , 2007, Appl. Math. Comput..

[73]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[74]  Paul H. Calamai,et al.  Exchange strategies for multiple Ant Colony System , 2007, Inf. Sci..

[75]  Sushil J. Louis,et al.  Case Injected Genetic Algorithms for Traveling Salesman Problems , 2000, Inf. Sci..

[76]  Chungnan Lee,et al.  On the harmonious mating strategy through tabu search , 2003, Inf. Sci..

[77]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[78]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[79]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[80]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[81]  Jean-Philippe Rennard,et al.  Handbook of Research on Nature-inspired Computing for Economics and Management , 2006 .

[82]  G. Nemhauser,et al.  Integer Programming , 2020 .