Transversal heteroclinic and homoclinic orbits in singular perturbation problems
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] F. Hoppensteadt. Properties of solutions of ordinary differential equations with small parameters , 1971 .
[3] C. Schmeiser,et al. Asymptotic analysis of singular singularly perturbed boundary value problems , 1986 .
[4] Kenneth J. Palmer,et al. Exponential dichotomies and transversal homoclinic points , 1984 .
[5] Xiaobiao Lin. Shadowing lemma and singularly perturbed boundary value problems , 1989 .
[6] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[7] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[8] Jack K. Hale,et al. Existence and stability of transition layers , 1988 .
[9] G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .
[10] Shui-Nee Chow,et al. An example of bifurcation to homoclinic orbits , 1980 .
[11] H. McKean. Nagumo's equation , 1970 .
[12] The bifurcations of countable connections from a twisted heteroclinic loop , 1991 .
[13] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[14] David Terman,et al. Propagation Phenomena in a Bistable Reaction-Diffusion System , 1982 .
[15] S. Hastings. Single and Multiple Pulse Waves for the FitzHugh–Nagumo , 1982 .
[16] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[17] Xiao-Biao Lin,et al. Heteroclinic bifurcation and singularly perturbed boundary value problems , 1990 .
[18] P. Fife. Transition layers in singular perturbation problems , 1974 .