On parameter convergence in least squares identification and adaptive control

Funding information National Natural Science Foundation of China, Grant/Award Number: 61703295; Biomedical Engineering Programme, Agency for Science, Technology and Research, Singapore, Grant/Award Number: 1421480015; Fundamental Research Program of Jiangsu Province, China, Grant/Award Number: BK20181183 Summary Least squares estimation is appealing in performance and robustness improvements of adaptive control. A strict condition termed persistent excitation (PE) needs to be satisfied to achieve parameter convergence in least squares estimation. This paper proposes a least squares identification and adaptive control strategy to achieve parameter convergence without the PE condition. A modified modeling error that utilizes online historical data together with instant data is constructed as additional feedback to update parameter estimates, and an integral transformation is introduced to avoid the time derivation of plant states in the modified modeling error. On the basis of these results, a regressor filtering–free least squares estimation law is proposed to guarantee exponential parameter convergence by an interval excitation condition, which is much weaker than the PE condition. And then, an identification-based indirect adaptive control law is proposed to establish exponential stability of the closed-loop system under the interval excitation condition. Illustrative results considering both identification and control problems have verified the effectiveness and superiority of the proposed approach.

[1]  Vadim I. Utkin,et al.  Parameters estimation using sliding mode observer with shift operator , 2012, J. Frankl. Inst..

[2]  Eric Johnson,et al.  Recursively updated least squares based modification term for adaptive control , 2010, Proceedings of the 2010 American Control Conference.

[3]  Guido Herrmann,et al.  Robust adaptive finite‐time parameter estimation and control for robotic systems , 2015 .

[4]  Eric N. Johnson,et al.  Theory and Flight-Test Validation of a Concurrent-Learning Adaptive Controller , 2011 .

[5]  Sergio Bittanti,et al.  A new paradigm for parameter estimation in system modeling , 2013 .

[6]  Romeo Ortega,et al.  A parameter estimation approach to state observation of nonlinear systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[7]  Anuradha M. Annaswamy,et al.  Composite adaptive posicast control for a class of LTI plants with known delay , 2013, Autom..

[8]  Tarek A. Mahmoud,et al.  Adaptive control scheme based on the least squares support vector machine network , 2011, Int. J. Appl. Math. Comput. Sci..

[9]  Haoyong Yu,et al.  Composite Learning Robot Control With Friction Compensation: A Neural Network-Based Approach , 2019, IEEE Transactions on Industrial Electronics.

[10]  Jeng-Tze Huang An adaptive compensator for a class of linearly parameterized systems , 2002, IEEE Trans. Autom. Control..

[11]  Miroslav Krstic On using least-squares updates without regressor filtering in identification and adaptive control of nonlinear systems , 2009, Autom..

[12]  Eugene Lavretsky,et al.  Combined/Composite Model Reference Adaptive Control , 2009, IEEE Transactions on Automatic Control.

[13]  Alexey A. Bobtsov,et al.  Efficient learning from adaptive control under sufficient excitation , 2019, International Journal of Robust and Nonlinear Control.

[14]  Girish Chowdhary,et al.  Concurrent learning adaptive control of linear systems with exponentially convergent bounds , 2013 .

[15]  夏晓南,et al.  Adaptive output feedback tracking control of stochastic nonlinear systems with dynamic uncertainties , 2015 .

[16]  Krishna Vijayaraghavan,et al.  Adaptive nonlinear observer for state and unknown parameter estimation in noisy systems , 2016, Int. J. Control.

[17]  Derong Liu,et al.  Data‐based output feedback control using least squares estimation method for a class of nonlinear systems , 2014 .

[18]  Jung-Shan Lin,et al.  Nonlinearities enhance parameter convergence in strict feedback systems , 1999, IEEE Trans. Autom. Control..

[19]  Yongping Pan,et al.  Model reference composite learning control without persistency of excitation , 2016 .

[20]  Farouq S. Mjalli,et al.  Recursive Least Squares-Based Adaptive Control of a Biodiesel Transesterification Reactor , 2010 .

[21]  Stephen A Burns,et al.  Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics. , 2012, Applied optics.

[22]  Bhim Singh,et al.  Adaptive Neurofuzzy Inference System Least-Mean-Square-Based Control Algorithm for DSTATCOM , 2016, IEEE Transactions on Industrial Informatics.

[23]  Christopher Edwards,et al.  State and Parameter Estimation for Nonlinear Delay Systems Using Sliding Mode Techniques , 2013, IEEE Transactions on Automatic Control.

[24]  Huaguang Zhang,et al.  Robust Global Exponential Synchronization of Uncertain Chaotic Delayed Neural Networks via Dual-Stage Impulsive Control , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Girish Chowdhary,et al.  A reproducing Kernel Hilbert Space approach for the online update of Radial Bases in neuro-adaptive control , 2011, IEEE Conference on Decision and Control and European Control Conference.

[26]  Kok Lay Teo,et al.  Parameter estimation for nonlinear time-delay systems with noisy output measurements , 2015, Autom..

[27]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[28]  Yu Guo,et al.  Robust adaptive estimation of nonlinear system with time‐varying parameters , 2015 .

[29]  Haoyong Yu,et al.  Online data‐driven composite adaptive backstepping control with exact differentiators , 2016 .

[30]  Krishna Vijayaraghavan,et al.  Nonlinear observer for simultaneous states and unknown parameter estimation , 2013, Int. J. Control.

[31]  Jeng Tze Huang Sufficient conditions for parameter convergence in linearizable systems , 2003, IEEE Trans. Autom. Control..

[32]  Jan Albert Mulder,et al.  Full-Envelope Modular Adaptive Control of a Fighter Aircraft Using Orthogonal Least Squares , 2010 .

[33]  Haoyong Yu,et al.  Composite learning robot control with guaranteed parameter convergence , 2018, Autom..

[34]  Haoyong Yu,et al.  Composite adaptive dynamic surface control using online recorded data , 2016 .

[35]  Jay A. Farrell Persistence of excitation conditions in passive learning control , 1997, Autom..

[36]  Ali Azadeh,et al.  Predictive control of drying process using an adaptive neuro-fuzzy and partial least squares approach , 2012 .

[37]  Huaguang Zhang,et al.  Near-Optimal Control for Nonzero-Sum Differential Games of Continuous-Time Nonlinear Systems Using Single-Network ADP , 2013, IEEE Transactions on Cybernetics.

[38]  Girish Chowdhary,et al.  Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation , 2014, Int. J. Control.

[39]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[40]  I. Kanellakopoulos,et al.  Nonlinearities enhance parameter convergence in output-feedback systems , 1998, IEEE Trans. Autom. Control..

[41]  Ya-Jun Pan,et al.  A novel adaptive robust control architecture for bilateral teleoperation systems under time‐varying delays , 2015 .

[42]  Yu Zhou,et al.  Composite adaptive fuzzy H∞ tracking control of uncertain nonlinear systems , 2013, Neurocomputing.

[43]  Brij N. Agrawal,et al.  Laser Beam Jitter Control Using Recursive-Least-Squares Adaptive Filters , 2011 .

[44]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[45]  Haoyong Yu,et al.  Composite Learning From Adaptive Dynamic Surface Control , 2016, IEEE Transactions on Automatic Control.

[46]  M. Hamdy,et al.  Robust adaptive fuzzy semi‐decentralized control for a class of large‐scale nonlinear systems using input–output linearization concept , 2010 .

[47]  Xin Zhang,et al.  Data-Driven Robust Approximate Optimal Tracking Control for Unknown General Nonlinear Systems Using Adaptive Dynamic Programming Method , 2011, IEEE Transactions on Neural Networks.

[48]  Bhim Singh,et al.  Comparative Performance of Wiener Filter and Adaptive Least Mean Square-Based Control for Power Quality Improvement , 2016, IEEE Transactions on Industrial Electronics.

[49]  Samer Riachy,et al.  A continuous-time framework for least squares parameter estimation , 2014, Autom..

[50]  Nhan T. Nguyen Least-Squares Model-Reference Adaptive Control with Chebyshev Orthogonal Polynomial Approximation , 2013, J. Aerosp. Inf. Syst..

[51]  Henk Nijmeijer,et al.  Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters , 2009, Autom..

[52]  José de Jesús Rubio,et al.  Adaptive least square control in discrete time of robotic arms , 2015, Soft Comput..

[53]  Henk Nijmeijer,et al.  Experimental comparison of parameter estimation methods in adaptive robot control , 1995, Autom..

[54]  Andrew R. Teel,et al.  Robust Finite-Time Parameter Estimation Using a Hybrid Systems Framework , 2012, IEEE Transactions on Automatic Control.

[55]  Xiang Li,et al.  Least-squares learning control with guaranteed parameter convergence , 2016, 2016 22nd International Conference on Automation and Computing (ICAC).

[56]  Haoyong Yu,et al.  Composite learning from adaptive backstepping neural network control , 2017, Neural Networks.

[57]  Yuanqing Xia,et al.  Adaptive parameter identification of linear SISO systems with unknown time-delay , 2014, Syst. Control. Lett..

[58]  Jing Na,et al.  Improving transient performance of adaptive control via a modified reference model and novel adaptation , 2017 .

[59]  Dragan Nesic,et al.  Parameter and State Estimation of Nonlinear Systems Using a Multi-Observer Under the Supervisory Framework , 2014, IEEE Transactions on Automatic Control.