Comparison of Frameworks for Parallel Multiobjective Evolutionary Optimization in Dynamic Problems

In this chapter some alternatives are discussed to take advantage of parallel computers in dynamic multi-objective optimization problems (DMO) using evolutionary algorithms. In DMO problems, the objective functions, the constraints, and hence, also the solutions, can change over time and usually demand to be solved online. Thus, high performance computing approaches, such as parallel processing, should be applied to these problems to meet the quality requirements within the given time constraints. Taking this into account, we describe two generic parallel frameworks for multi-objective evolutionary algorithms. These frameworks are used to compare the parallel processing performance of some multi-objective optimization evolutionary algorithms: our previously proposed algorithms, SFGA and SFGA2, in conjunction with SPEA2 and NSGA-II.We also propose a model to explain the benefits of parallel processing in multi-objective problems and the speedup results observed in our experiments.

[1]  Kim Fung Man,et al.  Multiobjective Optimization , 2011, IEEE Microwave Magazine.

[2]  A. Westerberg,et al.  Multi-objective Decisions on Capacity Planning and Production−Inventory Control under Uncertainty , 2004 .

[3]  Enrique Alba,et al.  Parallel evolutionary algorithms can achieve super-linear performance , 2002, Inf. Process. Lett..

[4]  Jürgen Branke,et al.  A Multi-population Approach to Dynamic Optimization Problems , 2000 .

[5]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[6]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[7]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[8]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[9]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Antonio Navarro,et al.  Adaptive classifier based on K-means clustering and dynamic programing , 1997, Electronic Imaging.

[11]  Jürgen Branke *,et al.  Anticipation and flexibility in dynamic scheduling , 2005 .

[12]  W. Cedeno,et al.  On the use of niching for dynamic landscapes , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[13]  F Detoronegro PSFGA: Parallel processing and evolutionary computation for multiobjective optimisation , 2004 .

[14]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[15]  Julio Ortega Lopera,et al.  Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms , 2010, Advances in Multi-Objective Nature Inspired Computing.

[16]  I. C. Parmee Adaptive Computing in Design and Manufacture , 1998 .

[17]  Andreas Zell,et al.  Parallelization of Multi-objective Evolutionary Algorithms Using Clustering Algorithms , 2005, EMO.

[18]  Rasmus K. Ursem,et al.  Multinational GAs: Multimodal Optimization Techniques in Dynamic Environments , 2000, GECCO.

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[21]  Kalyanmoy Deb,et al.  Parallelizing multi-objective evolutionary algorithms: cone separation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[22]  Riccardo Poli,et al.  Genetic and Evolutionary Computation , 2006, Intelligenza Artificiale.

[23]  Tomoyuki Hiroyasu,et al.  The new model of parallel genetic algorithm in multi-objective optimization problems - divided range multi-objective genetic algorithm , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[24]  Samir Saoudi,et al.  Stochastic K-means algorithm for vector quantization , 2001, Pattern Recognit. Lett..

[25]  Shengxiang Yang,et al.  Population-based incremental learning with memory scheme for changing environments , 2005, GECCO '05.

[26]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[27]  Terence C. Fogarty,et al.  Adaptive Combustion Balancing in Multiple Burner Boiler Using a Genetic Algorithm with Variable Range of Local Search , 1997, ICGA.

[28]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[29]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[30]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[31]  Hussein A. Abbass,et al.  Local models—an approach to distributed multi-objective optimization , 2009, Comput. Optim. Appl..

[32]  Appa Iyer Sivakumar,et al.  Pareto Control in Multi-Objective Dynamic Scheduling of a Stepper Machine in Semiconductor Wafer Fabrication , 2006, Proceedings of the 2006 Winter Simulation Conference.

[33]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[34]  Hajime Kita,et al.  Adaptation to a Changing Environment by Means of the Feedback Thermodynamical Genetic Algorithm , 1996, PPSN.

[35]  Carlos A. Coello Coello,et al.  An updated survey of GA-based multiobjective optimization techniques , 2000, CSUR.

[36]  Günter Rudolph,et al.  Parallel Approaches for Multiobjective Optimization , 2008, Multiobjective Optimization.

[37]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[38]  Hajime Kita,et al.  Adaptation to a Changing Environment by Means of the Thermodynamical Genetic Algorithm , 1999 .

[39]  Carlos A. Coello Coello,et al.  Advances in Multi-Objective Nature Inspired Computing , 2010, Advances in Multi-Objective Nature Inspired Computing.

[40]  Enrique Alba,et al.  Parallel Evolutionary Multiobjective Optimization , 2006, Parallel Evolutionary Computations.

[41]  Loo Hay Lee,et al.  Application of multi-objective simulation-optimization techniques to inventory management problems , 2005, Proceedings of the Winter Simulation Conference, 2005..

[42]  Enrique Alba,et al.  Parallel Evolutionary Computations , 2006, Studies in Computational Intelligence.

[43]  Kalyanmoy Deb,et al.  Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms , 2003, EMO.

[44]  Kang G. Shin,et al.  Real-time dynamic voltage scaling for low-power embedded operating systems , 2001, SOSP.

[45]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[46]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.