Matroid representations by partitions

Abstract A matroid on the ground set N with the rank function r is said to be partition representable of degree d⩾2 if partitions ξ i , i∈N , of a finite set Ω of the cardinality dr(N), exist such that the meet-partition ξI=⋀i∈Iξi has dr(I) blocks of the same cardinality for every I⊂N. Partition representable matroids are called also secret-sharing or almost affinely representable and partition representations correspond to ideal secret-sharing schemes or to almost affine codes. These notions are shown to be closely related to generalized quasigroup equations read out of the matroid structure. A special morphism of partition representations, called partition isotopy, is introduced. For a few matroids, the partition isotopy classes of partition representations are completely classified. An infinite set of excluded minors for the partition representability is constructed.

[1]  Paul Erdös,et al.  A Selection of Problems and Results in Combinatorics , 1999, Combinatorics, Probability and Computing.

[2]  B. Lindström A class of non-algebraic matroids of rank three , 1987 .

[3]  V. Belousov,et al.  SYSTEMS OF QUASIGROUPS WITH GENERALIZED IDENTITIES , 1965 .

[4]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[5]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[6]  Keith M. Martin,et al.  Geometric secret sharing schemes and their duals , 1994, Des. Codes Cryptogr..

[7]  R. H. Bruck A Survey of Binary Systems , 1971 .

[8]  Bernt Lindström On algebraic matroids , 1993, Discret. Math..

[9]  M. A. Taylor A Generalization of a Theorem of Belousov , 1978 .

[10]  Gary Gordon,et al.  Algebraic characteristic sets of matroids , 1987, J. Comb. Theory, Ser. B.

[11]  Orin Chein,et al.  Moufang loops of small order , 1978 .

[12]  Günter M. Ziegler,et al.  Matroid representations and free arrangements , 1990 .

[13]  Raymond W. Yeung,et al.  A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.

[14]  A. Ingleton,et al.  Conditions for representability and transversality of matroids , 1971 .

[15]  J. Aczél,et al.  Generalized associativity and bisymmetry on quasigroups , 1963 .

[16]  Peter Frankl,et al.  Matroids, Algebraic and Non Algebraic , 1988 .

[17]  A. D. Keedwell,et al.  Latin Squares: New Developments in the Theory and Applications , 1991 .

[18]  Keith M. Martin,et al.  Combinatorial models for perfect secret sharing schemes , 1998 .

[19]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.

[20]  David I. Adu Characterization of certain accessible dendrites , 1989 .

[21]  J. Aczél,et al.  Functional Equations: History, Applications and Theory , 1984 .

[22]  František Matúš,et al.  Conditional Independences among Four Random Variables III: Final Conclusion , 1999, Combinatorics, probability & computing.

[23]  Alexei E. Ashikhmin,et al.  Almost Affine Codes , 1998, Des. Codes Cryptogr..

[24]  Tom Brylawski,et al.  Intersection Theory for Embeddings of Matroids into Uniform Geometries , 1979 .

[25]  F. Matús PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .

[26]  L. Fook,et al.  Moufang Loops of Even Order , 1994 .

[27]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[28]  Saunders MacLane,et al.  Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry , 1936 .

[29]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[30]  Mulan Liu,et al.  Ideal homomorphic secret sharing schemes over cyclic groups , 1998 .

[31]  Frantisek Matús,et al.  Conditional Independences among Four Random Variables II , 1995, Combinatorics, Probability and Computing.

[32]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[33]  Joseph P. S. Kung,et al.  A source book in matroid theory , 1985 .

[34]  J. Kahn,et al.  Characteristic Sets of Matroids , 1982 .

[35]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.