Optical control of selectivity of high rate CO2 photoreduction via interband- or hot electron Z-scheme reaction pathways in Au-TiO2 plasmonic photonic crystal photocatalyst

Abstract Photonic crystals consisting of TiO2 nanotube arrays (PMTiNTs) with periodically modulated diameters were fabricated using a precise charge-controlled pulsed anodization technique. The PMTiNTs were decorated with gold nanoparticles (Au NPs) to form plasmonic photonic crystal photocatalysts (Au-PMTiNTs). A systematic study of CO2 photoreduction performance on as-prepared samples was conducted using different wavelengths and illumination sequences. A remarkable selectivity of the mechanism of CO2 photoreduction could be engineered by merely varying the spectral composition of the illumination sequence. Under AM1.5 G simulated sunlight (pathway#1), the Au-PMTiNTs produced methane (302 μmol g c a t . - 1  h−1) from CO2 with high selectivity (89.3 %). When also illuminated by a UV-poor white lamp (pathway#2), the Au-PMTiNTs produced formaldehyde (420 μmol g c a t . - 1  h−1) and carbon monoxide (323 μmol g c a t . - 1  h−1) with almost no methane evolved. We confirmed the photoreduction results by 13C isotope labeling experiments using GC MS. These results point to optical control of the selectivity of high-rate CO2 photoreduction through selection of one of two different mechanistic pathways. Pathway#1 implicates electron-hole pairs generated through interband transitions in TiO2 and Au as the primary active species responsible for reducing CO2 to methane. Pathway#2 involves excitation of both TiO2 and surface plasmons in Au. Hot electrons produced by plasmon damping and photogenerated holes in TiO2 proceed to reduce CO2 to HCHO and CO through a plasmonic Z-scheme.

[1]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[2]  T. Do,et al.  Nitrogen Vacancies-Assisted Enhanced Plasmonic Photoactivities of Au/g-C3N4 Crumpled Nanolayers: A Novel Pathway toward Efficient Solar Light-Driven Photocatalysts , 2019, Industrial & Engineering Chemistry Research.

[3]  Hongyi Zhang,et al.  Active and selective conversion of CO2 to CO on ultrathin Au nanowires. , 2014, Journal of the American Chemical Society.

[4]  Lianjun Liu,et al.  Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels , 2013 .

[5]  Lucie Obalová,et al.  Effect of silver doping on the TiO2 for photocatalytic reduction of CO2 , 2010 .

[6]  Y. Izumi,et al.  Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond , 2013 .

[7]  Mojgan Daneshmand,et al.  Time-Resolved Microwave Photoconductivity (TRMC) Using Planar Microwave Resonators: Application to the Study of Long-Lived Charge Pairs in Photoexcited Titania Nanotube Arrays , 2015 .

[8]  Taisuke Ozaki,et al.  Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .

[9]  Pingquan Wang,et al.  Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation , 2016 .

[10]  G. Spoto,et al.  CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study , 2014 .

[11]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[12]  Xiwen Zhang,et al.  Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4 , 2013 .

[13]  I-Hsiang Tseng,et al.  Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts , 2002 .

[14]  Jensen Li,et al.  Direct and Seamless Coupling of TiO2 Nanotube Photonic Crystal to Dye‐Sensitized Solar Cell: A Single‐Step Approach , 2011, Advanced materials.

[15]  Zhi Wei Seh,et al.  Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation , 2012, Advanced materials.

[16]  Gaetano Granozzi,et al.  The Nature of Defects in Fluorine-Doped TiO2 , 2008 .

[17]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[18]  K. Shankar,et al.  Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. , 2012, Angewandte Chemie.

[19]  Yi Luo,et al.  Theoretical Study on the Mechanism of Photoreduction of CO2 to CH4 on the Anatase TiO2(101) Surface , 2016 .

[20]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[21]  Claudio Ampelli,et al.  CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Lianzhou Wang,et al.  Fabrication of g‐C3N4/Au/C‐TiO2 Hollow Structures as Visible‐Light‐Driven Z‐Scheme Photocatalysts with Enhanced Photocatalytic H2 Evolution , 2017 .

[23]  Y. Liu,et al.  Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity , 2015 .

[24]  Zhenyu Zhang,et al.  Landau damping of quantum plasmons in metal nanostructures , 2013 .

[25]  H. García,et al.  Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. , 2014, Journal of the American Chemical Society.

[26]  Geoffrey A. Ozin,et al.  Amplified Photochemistry with Slow Photons , 2006 .

[27]  Jinlong Gong,et al.  CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts , 2016 .

[28]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[29]  N. Dimitrijević,et al.  Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition , 2009 .

[30]  Haitao Huang,et al.  Aperiodic TiO2 Nanotube Photonic Crystal: Full-Visible-Spectrum Solar Light Harvesting in Photovoltaic Devices , 2014, Scientific Reports.

[31]  Jing Shen,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[32]  Georg von Freymann,et al.  Slow photons in the fast lane in chemistry , 2008 .

[33]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[34]  E. Stach,et al.  Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. , 2014, Angewandte Chemie.

[35]  M. Khakani,et al.  Probing the Electronic Surface Properties and Bandgap Narrowing of in situ N, W, and (W,N) Doped Magnetron-Sputtered TiO2 Films Intended for Electro-Photocatalytic Applications , 2016 .

[36]  R. Caruso,et al.  Enhanced Photocatalytic Activity: Macroporous Electrospun Mats of Mesoporous Au/TiO2 Nanofibers , 2013 .

[37]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[38]  Pratim Biswas,et al.  Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. , 2012, Journal of the American Chemical Society.

[39]  Yun Zhang,et al.  Preferentially oriented TiO2 nanotube arrays on non-native substrates and their improved performance as electron transporting layer in halide perovskite solar cells , 2019, Nanotechnology.

[40]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[41]  Junying Zhang,et al.  A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction , 2018, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[42]  R. Boukherroub,et al.  A novel Ru/TiO2 hybrid nanocomposite catalyzed photoreduction of CO2 to methanol under visible light. , 2015, Nanoscale.

[43]  Yun Zhang,et al.  High rate CO2 photoreduction using flame annealed TiO2 nanotubes , 2019, Applied Catalysis B: Environmental.

[44]  N. Dimitrijević,et al.  Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications , 2008 .

[45]  S. Pillai,et al.  New Insights into the Mechanism of Visible Light Photocatalysis. , 2014, The journal of physical chemistry letters.

[46]  M. Kumar,et al.  Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: Significance of sulfur doping , 2018, International Journal of Hydrogen Energy.

[47]  K. Shankar,et al.  Plexcitonics – fundamental principles and optoelectronic applications , 2019, Journal of Materials Chemistry C.

[48]  Gabor A. Somorjai,et al.  The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane , 1978 .

[49]  G. Lu,et al.  Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. , 2011, Chemical communications.

[50]  Jian Pan,et al.  On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.

[51]  Prathamesh Pavaskar,et al.  Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light , 2011 .

[52]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[53]  M. Signoretto,et al.  Sustainable Carbon Dioxide Photoreduction by a Cooperative Effect of Reactor Design and Titania Metal Promotion , 2018 .

[54]  Jaejun Yu,et al.  Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity , 2017 .

[55]  Yi Luo,et al.  New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. , 2016, Journal of the American Chemical Society.

[56]  Matthew W. Kanan,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[57]  Do,et al.  Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms , 2019, Catalysts.

[58]  K. Shankar,et al.  Electron Transport, Trapping and Recombination in Anodic TiO 2 Nanotube Arrays , 2015 .

[59]  G. Henkelman,et al.  Model studies of heterogeneous catalytic hydrogenation reactions with gold. , 2013, Chemical Society reviews.

[60]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[61]  G. Martra Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour , 2000 .

[62]  Ying Li,et al.  Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review , 2014 .

[63]  Susumu Noda,et al.  Manipulation of photons at the surface of three-dimensional photonic crystals , 2009, Nature.

[64]  D. Tsai,et al.  Plasmonic photocatalysis , 2013, Reports on progress in physics. Physical Society.

[65]  The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction , 2018, Nature Communications.

[66]  A. Danon,et al.  Role of the surface lewis acid and base sites in the adsorption of CO 2 on titania nanotubes and platinized titania nanotubes: An in situ FT-IR study , 2013 .

[67]  Yun Zhang,et al.  Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles , 2016, Nano Research.

[68]  J. P. Lewis,et al.  Second-generation photocatalytic materials: anion-doped TiO2 , 2005 .

[69]  Liwu Zhang,et al.  Photonic nanostructures for solar energy conversion , 2016 .

[70]  S. Ogale,et al.  Direct Z-Scheme g-C3N4/FeWO4 Nanocomposite for Enhanced and Selective Photocatalytic CO2 Reduction under Visible Light. , 2019, ACS applied materials & interfaces.

[71]  T. Do,et al.  Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlight‐Driven Photocatalytic Reduction of CO2 into Fuels , 2019, Advanced Functional Materials.

[72]  J. Enkovaara,et al.  Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. , 2013, ACS nano.

[73]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[74]  N. Dimitrijević,et al.  Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. , 2011, Journal of the American Chemical Society.

[75]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[76]  Jingxia Wang,et al.  Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal , 2010 .

[77]  M. José-Yacamán,et al.  Modification of TiO2 by Bimetallic Au-Cu Nanoparticles for Wastewater Treatment. , 2013, Journal of materials chemistry. A.

[78]  Yasunori Taga,et al.  Electronic and optical properties of anatase TiO2 , 2000 .

[79]  G. Margaritondo,et al.  Electronic-Structure of Anatase Tio2 Oxide , 1994 .

[80]  Emily A Carter,et al.  Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction. , 2018, Chemical reviews.

[81]  P. Kamat,et al.  Making graphene holey. Gold-nanoparticle-mediated hydroxyl radical attack on reduced graphene oxide. , 2013, ACS nano.

[82]  G. Centi,et al.  Heterogeneous Catalytic Reactions with CO2: Status and Perspectives , 2004 .

[83]  T. Fichefet,et al.  Arctic sea-ice change tied to its mean state through thermodynamic processes , 2018, Nature Climate Change.

[84]  Ying Li,et al.  Engineering Coexposed {001} and {101} Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light , 2016 .

[85]  Georg von Freymann,et al.  Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals. , 2007, Journal of the American Chemical Society.

[86]  K. Shankar,et al.  Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. , 2015, Physical chemistry chemical physics : PCCP.