Intracellular mechanisms participating in the formation of neuronal calcium signals

[1]  P. Kostyuk,et al.  Diabetes-induced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons , 2004, Pflügers Archiv.

[2]  S. Kirischuk,et al.  Different properties of caffeine-sensitive Ca2+ stores in peripheral and central mammalian neurones , 2004, Pflügers Archiv.

[3]  J. Putney,et al.  Capacitative calcium entry in the nervous system. , 2003, Cell calcium.

[4]  P. Kostyuk,et al.  Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurones of rats. , 2002, Cell calcium.

[5]  D. Clapham Sorting out MIC, TRP, and CRAC Ion Channels , 2002, The Journal of general physiology.

[6]  G. Hajnóczky,et al.  Ca2+ marks: Miniature calcium signals in single mitochondria driven by ryanodine receptors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  C. Wollheim,et al.  Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. , 2002, Cell calcium.

[8]  T. McDowell,et al.  Functional properties of ryanodine receptors from rat dorsal root ganglia , 2002, FEBS letters.

[9]  R. Penner,et al.  CaT1 and the Calcium Release-activated Calcium Channel Manifest Distinct Pore Properties* , 2001, The Journal of Biological Chemistry.

[10]  J. García-Sancho,et al.  Mitochondrial [Ca2+] Oscillations Driven by Local High [Ca2+] Domains Generated by Spontaneous Electric Activity* 210 , 2001, The Journal of Biological Chemistry.

[11]  S. Sencer,et al.  Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. , 2001, The Journal of biological chemistry.

[12]  J. Meldolesi Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties , 2001, Progress in Neurobiology.

[13]  M. Blaustein,et al.  Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores , 2001, Trends in Neurosciences.

[14]  P. Kostyuk,et al.  Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons , 2001, Diabetologia.

[15]  M. Berridge,et al.  Mitochondrial Ca2+ Uptake Depends on the Spatial and Temporal Profile of Cytosolic Ca2+ Signals* , 2001, The Journal of Biological Chemistry.

[16]  S. Smaili,et al.  Cyclosporin A Inhibits Inositol 1,4,5-Trisphosphate-dependent Ca2+ Signals by Enhancing Ca2+ Uptake into the Endoplasmic Reticulum and Mitochondria* , 2001, The Journal of Biological Chemistry.

[17]  J. Putney,et al.  Role of the Phospholipase C-Inositol 1,4,5-Trisphosphate Pathway in Calcium Release-activated Calcium Current and Capacitative Calcium Entry* , 2001, The Journal of Biological Chemistry.

[18]  M. Iino,et al.  Ca2+‐sensor region of IP3 receptor controls intracellular Ca2+ signaling , 2001 .

[19]  D. Vandorpe,et al.  The Cytoplasmic C-terminal Fragment of Polycystin-1 Regulates a Ca2+-permeable Cation Channel* , 2001, The Journal of Biological Chemistry.

[20]  Alan Fine,et al.  Calcium Stores in Hippocampal Synaptic Boutons Mediate Short-Term Plasticity, Store-Operated Ca2+ Entry, and Spontaneous Transmitter Release , 2001, Neuron.

[21]  D. Cooper,et al.  Regulation of a Ca2+-sensitive Adenylyl Cyclase in an Excitable Cell , 2000, The Journal of Biological Chemistry.

[22]  A. Parekh,et al.  Respiring mitochondria determine the pattern of activation and inactivation of the store‐operated Ca2+ current ICRAC , 2000, The EMBO journal.

[23]  M. Madesh,et al.  The machinery of local Ca2+ signalling between sarco‐endoplasmic reticulum and mitochondria , 2000, The Journal of physiology.

[24]  J. Putney Presenilins, Alzheimer's Disease, and Capacitative Calcium Entry , 2000, Neuron.

[25]  J. Putney TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Roufogalis,et al.  Organisation of mitochondria in living sensory neurons , 1999, FEBS letters.

[27]  M. Duchen,et al.  Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death , 1999, The Journal of physiology.

[28]  M. Cahalan,et al.  Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. , 1999, Science.

[29]  A. Ayar,et al.  The actions of ryanodine on Ca2+-activated conductances in rat cultured DRG neurones; evidence for Ca2+-induced Ca2+ release , 1999, Naunyn-Schmiedeberg's Archives of Pharmacology.

[30]  P. Kostyuk Plasticity in Nerve Cell Function , 1999 .

[31]  Duchen Mitochondrial contributions to animal physiology: from homeostatic sensor to calcium signalling and cell death , 1999 .

[32]  T. Pozzan,et al.  Ca2+ Homeostasis in the Agonist-sensitive Internal Store: Functional Interactions Between Mitochondria and the ER Measured In Situ in Intact Cells , 1998, The Journal of cell biology.

[33]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[34]  B. Hille,et al.  Mitochondrial oversight of cellular Ca2+ signaling , 1998, Current Opinion in Neurobiology.

[35]  V. Shishkin,et al.  Changes in mitochondrial Ca2+homeostasis in primary sensory neurons of diabetic mice , 1998, Neuroreport.

[36]  R. Penner,et al.  The Store-Operated Calcium Current ICRAC: Nonlinear Activation by InsP3 and Dissociation from Calcium Release , 1997, Cell.

[37]  G. Seabrook,et al.  Activation of Ca2+-dependent currents in dorsal root ganglion neurons by metabotropic glutamate receptors and cyclic ADP-ribose precursors. , 1997, Journal of neurophysiology.

[38]  J. Cidlowski,et al.  Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells. , 1997, The American journal of physiology.

[39]  R. Zucker,et al.  Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission , 1997, Neuron.

[40]  Ariel L. Escobar,et al.  Ca2+-induced Ca2+ Release Phenomena in Mammalian Sympathetic Neurons Are Critically Dependent on the Rate of Rise of Trigger Ca2+ , 1997, The Journal of general physiology.

[41]  J. Bockaert,et al.  Functional coupling between ryanodine receptors and L-type calcium channels in neurons , 1996, Nature.

[42]  P. Kostyuk,et al.  Gradual caffeine-induced Ca2+ release in mouse dorsal root ganglion neurons is controlled by cytoplasmic and luminal Ca2+ , 1996, Neuroscience.

[43]  S. Kirischuk,et al.  Calcium homeostasis in aged neurones. , 1996, Life sciences.

[44]  G. Isenberg,et al.  Calcium‐induced calcium release in rat sensory neurons. , 1995, The Journal of physiology.

[45]  James D. Lechleiter,et al.  Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes , 1995, Nature.

[46]  N. Pronchuk,et al.  Calcium signal prolongation in sensory neurones of mice with experimental diabetes , 1995, Neuroreport.

[47]  S. Kirischuk,et al.  Age‐Dependent Changes in Calcium Currents and Calcium Homeostasis in Mammalian Neurons a , 1994, Annals of the New York Academy of Sciences.

[48]  P. Kostyuk,et al.  Calcium currents in aged rat dorsal root ganglion neurones. , 1993, The Journal of physiology.

[49]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[50]  K. Swann,et al.  Activation of Ca(2+)-dependent currents in cultured rat dorsal root ganglion neurones by a sperm factor and cyclic ADP-ribose. , 1992, Molecular biology of the cell.

[51]  T. Cheek,et al.  Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells. , 1989, Cell calcium.

[52]  M. Berridge,et al.  Inositol trisphosphate and calcium signaling. , 1988, Cold Spring Harbor symposia on quantitative biology.

[53]  O. Krishtal,et al.  Effects of calcium and calcium‐chelating agents on the inward and outward current in the membrane of mollusc neurones , 1977, The Journal of physiology.