Nominal rewriting with name generation: abstraction vs. locality

Nominal rewriting extends first-order rewriting with Gabbay-Pitts abstractors: bound entities are named, matching respects α-conversion and can be directly implemented thanks to the use of freshness constraints. In this paper we study two extensions to nominal rewriting. First we introduce a NEW quantifier for modelling name generation and restriction. This allows us to model higher-order functions involving local state, and has also applications in concurrency theory. The second extension introduces new constraints in freshness contexts. This allows us to express strategies of reduction and has applications in programming language design and implementation. Finally, we study confluence properties of nominal rewriting and its extensions.

[1]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[2]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[3]  H. Barendregt Pairing without conventional restraints , 1974 .

[4]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[5]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[6]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[7]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[8]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[9]  Val Tannen,et al.  Polymorphic Rewriting Conserves Algebraic Strong Normalization , 1991, Theor. Comput. Sci..

[10]  Jean-Pierre Jouannaud,et al.  A computation model for executable higher-order algebraic specification languages , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[11]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[12]  Samson Abramsky,et al.  Handbook of logic in computer science. , 1992 .

[13]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[14]  Andrew M. Pitts,et al.  Observable Properties of Higher Order Functions that Dynamically Create Local Names, or What's new? , 1993, MFCS.

[15]  Vincent van Oostrom,et al.  Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..

[16]  Val Tannen,et al.  Polymorphic Rewriting Conserves Algebraic Confluence , 1994, Inf. Comput..

[17]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[18]  Jean-Pierre Jouannaud,et al.  Modular Termination of Term Rewriting Systems Revisited , 1994, COMPASS/ADT.

[19]  F. Raamsdonk Confluence and Normalisation of Higher-Order Rewriting , 1996 .

[20]  Herman Geuvers,et al.  Modularity of strong normalization in the algebraic-λ-cube , 1997, Journal of Functional Programming.

[21]  Bruno Pagano Des calculs de substitution explicite et de leur application a la compilation et de leur application a la compilation des langages fonctionnels , 1998 .

[22]  Tobias Nipkow,et al.  Higher-Order Rewrite Systems and Their Confluence , 1998, Theor. Comput. Sci..

[23]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[24]  Andrew M. Pitts,et al.  A Metalanguage for Programming with Bound Names Modulo Renaming , 2000, MPC.

[25]  Andrew M. Pitts,et al.  Nominal Logic: A First Order Theory of Names and Binding , 2001, TACS.

[26]  Claude Kirchner,et al.  The rewriting calculus - Part II , 2001, Log. J. IGPL.

[27]  Claude Kirchner,et al.  The rewriting calculus - Part I , 2001, Log. J. IGPL.

[28]  Andrew M. Pitts,et al.  A First Order Theory of Names and Binding , 2001 .

[29]  René David,et al.  A lambda-calculus with explicit weakening and explicit substitution , 2001, Math. Struct. Comput. Sci..

[30]  Alejandro Ríos,et al.  From Higher-Order to First-Order Rewriting , 2001, RTA.

[31]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[32]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[33]  Clara Bertolissi,et al.  Translating Combinatory Reduction Systems into the Rewriting Calculus , 2003, RULE@RDP.

[34]  Makoto Hamana,et al.  Term rewriting with variable binding: an initial algebra approach , 2003, PPDP '03.

[35]  Murdoch J. Gabbay The π-Calculus in FM , 2003 .

[36]  Frank Pfenning,et al.  Higher-order pattern complement and the strict λ-calculus , 2003, TOCL.

[37]  Andrew M. Pitts,et al.  FreshML: programming with binders made simple , 2003, ICFP '03.

[38]  Dale Miller,et al.  A proof theory for generic judgments: an extended abstract , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[39]  James Cheney,et al.  A sequent calculus for nominal logic , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[40]  Christian Urban,et al.  Nominal unification , 2004, Theor. Comput. Sci..

[41]  James Cheney,et al.  The Complexity of Equivariant Unification , 2004, ICALP.

[42]  Ian Mackie,et al.  Nominal rewriting systems , 2004, PPDP '04.

[43]  Ian Mackie,et al.  Closed reduction: explicit substitutions without alpha-conversion , 2005, Math. Struct. Comput. Sci..