Particle trapping in high-conductivity media with electrothermally enhanced negative dielectrophoresis.
暂无分享,去创建一个
We demonstrate negative dielectrophoresis (DEP) trapping of particles from high-conductivity media using a novel planar microelectrode that allows electrothermal enhancement of DEP traps. DEP force and electrothermal flow motion are investigated using a scaling analysis, numerical simulations, and experiments. Results show that the DEP trapping is enhanced by lateral transport of particles toward the capture zones due to electrothermal flow, whereas DEP trapping occurred only in limited spatial ranges without the flow motion. The electrothermally enhanced DEP will broaden the limit of electrokinetic manipulations in high-conductivity media. By providing patterned trapping zones that can act as target-specific attachment/detection sites, the presented device allows development of biosensor applications for rapid detection of pathogens and other microorganisms within a practical range of buffer conductivity.