n-Dimensional Fuzzy Negations

$n$ -dimensional fuzzy sets theory is a broad research area extending fuzzy set theory where the membership values are $n$ -tuples of real numbers in the unit interval $[0,1]$ orderly increased, called $n$ -dimensional intervals. The set of $n$ -dimensional intervals is denoted by $L_{n}([0,1])$ . This paper investigates a special extension from $[0,1]$ — $n$ -representable fuzzy negations on $L_{n}([0,1])$ , summarizing the class of such functions that are continuous and monotone by part. The main properties of (strong) fuzzy negations on $[0,1]$ are preserved by representable (strong) fuzzy negation on $L_{n}([0,1])$ , mainly related to the analysis of degenerate elements and equilibrium points. The conjugate obtained by the action of an $n$ -dimensional automorphism on an $n$ -dimensional fuzzy negation provides a method to obtain another $n$ -dimensional fuzzy negation, in which properties such as representability, continuity, and monotonicity on $L_{n}([0,1])$ are preserved. Finally, we provide a method for multiexpert decision-making problems based on ${\mathcal{N}}$ -reciprocal $n$ -dimensional fuzzy preference relations over a set of alternatives preserving the ${\mathcal{N}}$ -reciprocity for an $n$ -dimensional fuzzy negation ${\mathcal{N}}$ .

[1]  L. D. Miguel,et al.  An algorithm for group decision making using n-dimensional fuzzy sets, admissible orders and OWA operators , 2017, Information Fusion.

[2]  J. Goguen L-fuzzy sets , 1967 .

[3]  Humberto Bustince,et al.  QL-operations and QL-implication functions constructed from tuples (O, G, N) and the generation of fuzzy subsethood and entropy measures , 2017, Int. J. Approx. Reason..

[4]  E. Trillas Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .

[5]  Humberto Bustince,et al.  Negations Generated by Bounded Lattices t-Norms , 2012, IPMU.

[6]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[7]  Krassimir T. Atanassov,et al.  Intuitionistic Fuzzy Sets - Theory and Applications , 1999, Studies in Fuzziness and Soft Computing.

[8]  Joan Torrens,et al.  A construction method of semicopulas from fuzzy negations , 2013, Fuzzy Sets Syst..

[9]  Humberto Bustince,et al.  A New Approach to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued Fuzzy Set Applications , 2013, IEEE Transactions on Fuzzy Systems.

[10]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[11]  Humberto Bustince,et al.  A class of fuzzy multisets with a fixed number of memberships , 2012, Inf. Sci..

[12]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[13]  Radko Mesiar,et al.  Triangular norms on product lattices , 1999, Fuzzy Sets Syst..

[14]  Radko Mesiar,et al.  Aggregation functions on bounded partially ordered sets and their classification , 2011, Fuzzy Sets Syst..

[15]  Francisco Herrera,et al.  A note on the reciprocity in the aggregation of fuzzy preference relations using OWA operators , 2003, Fuzzy Sets Syst..

[16]  Mirko Navara,et al.  Characterization of Measures Based on Strict Triangular Norms , 1999 .

[17]  E. S. Palmeira,et al.  EXTENSION OF N-DIMENSIONAL LATTICE-VALUED NEGATIONS , 2014 .

[18]  Hani Hagras,et al.  Type-2 Fuzzy Entropy Sets , 2017, IEEE Transactions on Fuzzy Systems.

[19]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[20]  E. Stanley Lee,et al.  The n-dimensional fuzzy sets and Zadeh fuzzy sets based on the finite valued fuzzy sets , 2010, Comput. Math. Appl..

[21]  Francisco Herrera,et al.  A Historical Account of Types of Fuzzy Sets and Their Relationships , 2016, IEEE Transactions on Fuzzy Systems.

[22]  Humberto Bustince,et al.  N-Reciprocity Property for Interval-Valued Fuzzy Relations with an Application to Group Decision Making Problems in Social Networks , 2017, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[23]  Benjamín R. C. Bedregal,et al.  T-Norms on Bounded Lattices: t-norm Morphisms and Operators , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[24]  Radko Mesiar,et al.  A new way to extend t-norms, t-conorms and negations , 2014, Fuzzy Sets Syst..

[25]  Humberto Bustince,et al.  Generation of linear orders for intervals by means of aggregation functions , 2013, Fuzzy Sets Syst..

[26]  J. Montero,et al.  A Survey of Interval‐Valued Fuzzy Sets , 2008 .

[27]  B. Bedregal,et al.  On Admissible Total Orders for Interval-valued Intuitionistic Fuzzy Membership Degrees , 2016 .

[28]  Mariano Eriz Aggregation Functions: A Guide for Practitioners , 2010 .

[29]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[30]  Benjamín R. C. Bedregal,et al.  On interval fuzzy negations , 2010, Fuzzy Sets Syst..

[31]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[32]  Humberto Bustince,et al.  Automorphisms, negations and implication operators , 2003, Fuzzy Sets Syst..

[33]  Humberto Bustince,et al.  A Characterization Theorem for t-Representable n-Dimensional Triangular Norms , 2011, Eurofuse.

[34]  Adrião Duarte Dória Neto,et al.  Relating De Morgan triples with Atanassov's intuitionistic De Morgan triples via automorphisms , 2011, Int. J. Approx. Reason..

[35]  Humberto Bustince,et al.  On n-dimensional strict fuzzy negations , 2016, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).