Computational fluid dynamic prediction of the residence time distribution of a prototype hydrodynamic vortex separator operating with a base flow component

Abstract A hydrodynamic vortex separator (HDVS) has been modelled using computational fluid dynamics (CFD) in order to accurately determine the residence time of the fluid at the two outlets of the HDVS using a technique that was developed for use in heating, ventilation, and air conditioning (HVAC). The results have been compared with experimental data [1]. It is shown that, in using CFD, it is possible to study the response to a variety of inputs, and also to determine the mean residence time of the fluid within the separator. Although the technique used for determining the residence time was developed for use in HVAC, it is shown here to be applicable for the analysis of hydraulic systems, specifically, wastewater treatment systems.