Late Cenozoic Foreland‐to‐Hinterland Low‐Temperature Exhumation History of the Kashmir Himalaya

New apatite and zircon (U‐Th)/He cooling ages quantify late Cenozoic exhumation patterns associated with fault activity across the Kashmir Himalaya. Apatite (U‐Th)/He (AHe) cooling ages of detrital grains from the Sub‐Himalayan foreland sediments indicate significant resetting. AHe data and thermal modeling reveal cooling and exhumation initiated by 4 Ma at the deformation front and by 2–4 Ma throughout other Sub‐Himalayan structures. Exhumation rates for Sub‐Himalayan structures are ≥1 mm/year. In the hinterland, thrust sheet samples from the Main Boundary thrust and Main Central thrust yield AHe cooling ages between 5.1 and 21.1 Ma. Published apatite fission track cooling ages (<3 Ma) and high exhumation rates (3.6–3.2 mm/year) across the Kishtwar window further to the north are consistent with AHe data from the Sub‐Himalayan structures. The pattern of cooling ages and rates indicates that exhumation occurs in association with changes in the Himalayan basal décollement ramp geometry. Hinterland zircon (U‐Th)/He (ZHe) data show a pronounced abundance and probability spike in cooling ages between 14 and 21 Ma, a period when Main Central thrust motion is well documented throughout the Himalaya. ZHe single‐grain ages from Sub‐Himalayan samples contain a nearly identical cluster from 16 to 23 Ma. Cooling patterns across the Kashmir Himalayas do not correlate spatially with modern monsoon precipitation, suggesting that climate‐related precipitation and exhumation are decoupled. Coeval translation over the basal décollement and distributed imbricate thrust deformation of the foreland in the upper plate characterizes fault‐related exhumation of the Sub‐Himalayan orogenic belt after 4 Ma.

[1]  S. Dey,et al.  ERRATUM: Sustained out-of-sequence shortening along a tectonically active segment of the Main Boundary thrust: The Dhauladhar Range in the northwestern Himalaya , 2018, Lithosphere.

[2]  J. Braun,et al.  Do along-strike tectonic variations in the Nepal Himalaya reflect different stages in the accretion cycle? Insights from numerical modeling , 2017 .

[3]  K. Farley,et al.  The southern Sierra Nevada pediment, central California , 2017 .

[4]  Y. Gavillot,et al.  Shortening rate and Holocene surface rupture on the Riasi fault system in the Kashmir Himalaya: Active thrusting within the Northwest Himalayan orogenic wedge , 2016 .

[5]  K. Farley,et al.  Eocene activity on the Western Sierra Fault System and its role incising Kings Canyon, California , 2016 .

[6]  P. Beek,et al.  Contrasting tectonically driven exhumation and incision patterns, western versus central Nepal Himalaya , 2016 .

[7]  I. Coutand,et al.  Late Neogene tectonically driven crustal exhumation of the Sikkim Himalaya: Insights from inversion of multithermochronologic data , 2016 .

[8]  K. Farley,et al.  A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon , 2015 .

[9]  R. Vassallo,et al.  Distribution of the Late-Quaternary deformation in Northwestern Himalaya , 2015 .

[10]  Pieter Vermeesch,et al.  Thermal history modelling: HeFTy vs. QTQt , 2014 .

[11]  Y. Gavillot Active tectonics of the Kashmir Himalaya (NW India) and earthquake potential on folds, out-of-sequence thrusts, and duplexes , 2014 .

[12]  L. Godin,et al.  Tracking basement cross-strike discontinuities in the Indian crust beneath the Himalayan orogen using gravity data – relationship to upper crustal faults , 2014 .

[13]  W. Szeliga,et al.  Seismic slip deficit in the Kashmir Himalaya from GPS observations , 2013 .

[14]  Richard C. Quittmeyer,et al.  Seismicity and Continental Subduction in the Himalayan Arc , 2013 .

[15]  R. Ketcham,et al.  Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology , 2013, American Journal of Science.

[16]  L. Bollinger,et al.  Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255 , 2012, Nature Geoscience.

[17]  V. Gahalaut,et al.  Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes , 2012 .

[18]  Kerry Gallagher,et al.  Transdimensional inverse thermal history modeling for quantitative thermochronology , 2012 .

[19]  Violaine Vignon Activité hors séquence des chevauchements dans la syntaxe nord-ouest himalayenne : apports de la modélisation analogique et quantification quaternaire par analyse morphotectonique , 2011 .

[20]  S. Klemperer,et al.  Crustal structure beneath the Sub-Himalayan fold–thrust belt, Kangra recess, northwest India, from seismic reflection profiling: Implications for Late Paleoproterozoic orogenesis and modern earthquake hazard , 2011 .

[21]  M. Strecker,et al.  Exhumational variability within the Himalaya of northwest India , 2011 .

[22]  Douglas W. Burbank,et al.  Towards a complete Himalayan hydrologic budget : The spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge , 2010 .

[23]  Y. Gavillot,et al.  Timing of thrust activity in the High Zagros fold‐thrust belt, Iran, from (U‐Th)/He thermochronometry , 2010 .

[24]  M. Malik,et al.  Redefining Medlicott–Wadia's main boundary fault from Jhelum to Yamuna: An active fault strand of the main boundary thrust in northwest Himalaya , 2010 .

[25]  J. Avouac,et al.  Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography , 2010 .

[26]  P. V. Beek,et al.  Assessing Quaternary reactivation of the Main Central thrust zone (central Nepal Himalaya): New thermochronologic data and numerical modeling , 2009 .

[27]  Monalisa,et al.  Geological setting of the 8 October 2005 Kashmir earthquake , 2009 .

[28]  R. Patel,et al.  Exhumation history of the Higher Himalayan Crystalline along Dhauliganga‐Goriganga river valleys, NW India: New constraints from fission track analysis , 2009 .

[29]  K. Farley,et al.  Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model , 2009 .

[30]  B. Bookhagen,et al.  Erosional variability along the northwest Himalaya , 2009 .

[31]  S. Wesnousky,et al.  Long recurrence interval of faulting beyond the 2005 Kashmir earthquake around the northwestern margin of the Indo-Asian collision zone , 2008 .

[32]  Walker,et al.  Restoration of the Western Himalaya: implications for metamorphic protoliths, thrust and normal faulting, and channel flow models , 2007 .

[33]  S. Hoth,et al.  Frontal accretion: An internal clock for bivergent wedge deformation and surface uplift , 2007 .

[34]  K. Hodges,et al.  Plio‐Quaternary exhumation history of the central Nepalese Himalaya: 2. Thermokinematic and thermochronometer age prediction model , 2007 .

[35]  D. Burbank,et al.  Plio‐Quaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite [U‐Th]/He analyses , 2007 .

[36]  J. Mugnier,et al.  Late Miocene – Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal , 2006 .

[37]  Hiroyuki Tsutsumi,et al.  Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and Its Active Tectonic Implications , 2006 .

[38]  B. Bookhagen,et al.  Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas , 2006 .

[39]  Sebastien Leprince,et al.  The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis , 2006 .

[40]  K. Hodges,et al.  A comparative study of detrital mineral and bedrock age-elevation methods for estimating erosion rates , 2006 .

[41]  D. Burbank,et al.  Thermal and kinematic modeling of bedrock and detrital cooling ages in the central Himalaya , 2006 .

[42]  K. Whipple,et al.  Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital 40Ar/39Ar thermochronology, and thermal modeling , 2006 .

[43]  P. DeCelles,et al.  Regional structure and kinematic history of the Sevier fold-and-thrust belt, central Utah , 2006 .

[44]  An Yin,et al.  Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation , 2006 .

[45]  J. Avouac,et al.  Mountain building in the Nepal Himalaya: Thermal and kinematic model , 2006 .

[46]  Douglas W. Burbank,et al.  Topography, relief, and TRMM‐derived rainfall variations along the Himalaya , 2006 .

[47]  J. Mattinson,et al.  Doming in compressional orogenic settings: New geochronological constraints from the NW Himalaya , 2006 .

[48]  B. Meade,et al.  Orogen response to changes in climatic and tectonic forcing , 2006 .

[49]  R. Briggs,et al.  Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya , 2006 .

[50]  B. Bookhagen,et al.  From tectonically to erosionally controlled development of the Himalayan orogen , 2005 .

[51]  K. Hodges,et al.  Active out-of-sequence thrust faulting in the central Nepalese Himalaya , 2005, Nature.

[52]  S. Sapkota,et al.  Evidence for a Great Medieval Earthquake (~1100 A.D.) in the Central Himalayas, Nepal , 2005, Science.

[53]  K. Pogue,et al.  Tectonostratigraphic subdivisions of the Himalaya: A view from the west , 2004 .

[54]  Robert S. Yeats,et al.  A Vertical Exposure of the 1999 Surface Rupture of the Chelungpu Fault at Wufeng, Western Taiwan: Structural and Paleoseismic Implications for an Active Thrust Fault , 2004 .

[55]  B. Bookhagen,et al.  Climatic control on rapid exhumation along the Southern Himalayan Front , 2004 .

[56]  K. Whipple,et al.  Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges , 2004 .

[57]  P. Reiners,et al.  Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating , 2004 .

[58]  G. Batt,et al.  A zero-damage model for fission-track annealing in zircon , 2004 .

[59]  B. Meade,et al.  Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state , 2004 .

[60]  B. Grasemann,et al.  Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion , 2004 .

[61]  T. P. Ojha,et al.  Decoupling of erosion and precipitation in the Himalayas , 2003, Nature.

[62]  Kip V. Hodges,et al.  Has focused denudation sustained active thrusting at the Himalayan topographic front , 2003 .

[63]  M. Searle,et al.  The South Tibetan Detachment and the Manaslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna‐Manaslu Himalaya, Nepal , 2003, The Journal of Geology.

[64]  K. Farley,et al.  Thermal sensitivities of zircon (U-Th)/He and fission-track systems , 2003 .

[65]  Sumit Ghosh,et al.  Tectonic impact on the fluvial deposits of Plio-Pleistocene Himalayan foreland basin, India , 2003 .

[66]  M. Cosca,et al.  Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: the Indus River–Tso Morari transect, NW Himalaya , 2003, Journal of the Geological Society.

[67]  K. Farley,et al.  Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes , 2003 .

[68]  B. N. Upreti,et al.  Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal , 2002 .

[69]  C. Ji,et al.  Slip distribution and tectonic implication of the 1999 Chi‐Chi, Taiwan, Earthquake , 2001 .

[70]  K. Whipple,et al.  Southward extrusion of Tibetan crust and its effect on Himalayan tectonics , 2001 .

[71]  B. N. Upreti,et al.  Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal , 2001 .

[72]  K. Farley,et al.  Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California , 2000 .

[73]  Stephenson,et al.  Inverted metamorphism and the Main Central Thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya , 2000 .

[74]  A. Jain,et al.  Timing, quantification and tectonic modelling of Pliocene–Quaternary movements in the NW Himalaya: evidence from fission track dating , 2000 .

[75]  Jérôme Lavé,et al.  Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal , 2000 .

[76]  K. Hodges Tectonics of the Himalaya and southern Tibet from two perspectives , 2000 .

[77]  N. Brozović,et al.  Dynamic fluvial systems and gravel progradation in the Himalayan foreland , 2000 .

[78]  Sean D. Willett,et al.  Orogeny and orography: The effects of erosion on the structure of mountain belts , 1999 .

[79]  S. Wesnousky,et al.  Uplift and convergence along the Himalayan Frontal Thrust of India , 1999 .

[80]  L. Husson,et al.  The Siwaliks of western Nepal I. Geometry and kinematics , 1999 .

[81]  Richard A. Ketcham,et al.  Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales , 1999 .

[82]  G. Tucker,et al.  Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs , 1999 .

[83]  J. Walker,et al.  Metamorphism, Melting, and Extension: Age Constraints from the High Himalayan Slab of Southeast Zanskar and Northwest Lahaul , 1999, The Journal of Geology.

[84]  A. Kumar,et al.  Cooling and exhumation history of the Mandi Granite and adjoining tectonic units, Himachal Pradesh, and estimation of closure temperature from external surface of zircon , 1999 .

[85]  G. Gehrels,et al.  Eocene‐early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal , 1998 .

[86]  R. J. Lillie,et al.  Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India , 1998 .

[87]  K. Farley,et al.  Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer , 1998 .

[88]  M. Gutscher,et al.  Episodic imbricate thrusting and underthrusting: Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge , 1998 .

[89]  V. Thakur Structure of the Chamba nappe and position of the Main Central Thrust in Kashmir Himalaya , 1998 .

[90]  J. Norris,et al.  Erosional control on the structural evolution of a transpressional thrust complex on the Alpine Faul , 1997 .

[91]  A. Meigs,et al.  Growth of the South Pyrenean orogenic wedge , 1997 .

[92]  J. Freymueller,et al.  GPS measurements of present-day convergence across the Nepal Himalaya , 1997, Nature.

[93]  A. Carter,et al.  Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: Constraints upon the partial annealing zone and closure temperature , 1996 .

[94]  T. Tagami,et al.  Provenance and thermal history of the Franciscan accretionary complex: Constraints from zircon fission track thermochronology , 1996 .

[95]  M. Gutscher,et al.  Cyclical behavior of thrust wedges: Insights from high basal friction sandbox experiments , 1996 .

[96]  S. E. Boyer Sedimentary basin taper as a factor controlling the geometry and advance of thrust belts , 1995 .

[97]  R. Beck,et al.  Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya , 1995 .

[98]  Ashok Kumar,et al.  Late Cenozoic - Quaternary thermo-tectonic history of Higher Himalayan Crystalline (HHC) in Kishtwar-Padar-Zanskar region, NW Himalaya: evidence from fission track ages , 1995 .

[99]  Sean D. Willett,et al.  Mechanical model for the tectonics of doubly vergent compressional orogens , 1993 .

[100]  R. Allmendinger,et al.  Chronology of Motion in a Complete Thrust Belt: The Precordillera, 30-31°S, Andes Mountains , 1993, The Journal of Geology.

[101]  D. Schelling,et al.  Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal Himalaya , 1991 .

[102]  R. Huene,et al.  OBSERVATIONS AT CONVERGENT MARGINS CONCERNING SEDIMENT SUBDUCTION, SUBDUCTION EROSION, AND THE GROWTH , 1991 .

[103]  B. P. Radhakrishna,et al.  Records of the Geological Survey of India , 1991 .

[104]  J. Muñoz,et al.  Thrust sequence in the southern central Pyrenees , 1990 .

[105]  R. Hyndman,et al.  Accretion and recent deformation of sediments along the northern Cascadia subduction zone , 1989 .

[106]  C. Morley Out‐of‐Sequence Thrusts , 1988 .

[107]  R. Rao Magnetic polarity stratigraphy and vertebrate paleontology of the upper Siwalik subgroup of Jammmu Hills, India , 1988 .

[108]  A. Gleadow,et al.  Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land , 1987 .

[109]  J. Suppe,et al.  Geometry and kinematics of fault-bend folding , 1983 .

[110]  J. Suppe,et al.  Mechanics of fold-and-thrust belts and accretionary wedges , 1983 .

[111]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[112]  C. D. A. Dahlstrom Balanced cross sections , 1969 .

[113]  I. Dunkl,et al.  Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya , 2018 .

[114]  Thrust Systems THRUST SYSTEMS , 2017 .

[115]  K. Valdiya Himalayan Foreland Basin , 2016 .

[116]  J. Carcaillet,et al.  Decoupling of long-term exhumation and short-term erosion rates in the Sikkim Himalaya , 2016 .

[117]  Monalisa,et al.  New data on the Indus Kohistan seismic zone and its extension into the Hazara–Kashmir Syntaxis, NW Himalayas of Pakistan , 2007 .

[118]  O. Oncken,et al.  Influence of erosion on the kinematics of bivergent orogens: Results from scaled sandbox simulations , 2006 .

[119]  S. Sangode,et al.  Magnetic polarity stratigraphy of Plio-Pleistocene Pinjor Formation (type locality), Siwalik Group, NW Himalaya, India , 2005 .

[120]  P. Reiners Zircon (U-Th)/He Thermochronometry , 2005 .

[121]  D. Stockli Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings , 2005 .

[122]  Todd A. Ehlers,et al.  Low-temperature thermochronology : techniques, interpretations, and applications , 2005 .

[123]  C. Spiegel,et al.  Introduction: Detrital thermochronology , 2004 .

[124]  J. Mugnier,et al.  Episodicity and Rates of Thrust-sheet Motion in the Himalayas (Western Nepal) , 2004 .

[125]  Kathleen,et al.  Zircon ( UTh ) / He thermochronometry : He diffusion and comparisons with 40 Ar / 39 Ar dating , 2004 .

[126]  Jean-Philippe Avouac,et al.  Mountain Building, Erosion, and the Seismic Cycle in the Nepal Himalaya , 2003 .

[127]  S. Sangode,et al.  Magnetostratigraphic correlation of the Late Cenozoic fluvial sequences from NW Himalaya, India , 2003 .

[128]  K. Farley,et al.  (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime , 2002 .

[129]  G. Laslett,et al.  Revised annealing kinetics of fission tracks in zircon and geological implications , 1998 .

[130]  B. N. Upreti,et al.  Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal , 1998 .

[131]  D. Burbank,et al.  Tertiary basins of Spain: Eocene-Oligocene thrusting and basin configuration in the eastern and central Pyrenees (Spain) , 1996 .

[132]  R. Metcalfe Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya , 1993, Geological Society, London, Special Publications.

[133]  V. C. Thakur Geology of western Himalaya , 1992 .

[134]  J. Muñoz,et al.  Coeval hindward- and forward-imbricating thrusting in the south-central Pyrenees, Spain: Timing and rates of shortening and deposition , 1992 .

[135]  S. E. Boyer Geometric evidence for synchronous thrusting in the southern Alberta and northwest Montana thrust belts , 1992 .

[136]  J. Suppe,et al.  Geometry and kinematics of fault-propagation folding , 1990 .

[137]  R. Beck,et al.  Early Pliocene uplift of the Salt Range; Temporal constraints on thrust wedge development, northwest Himalaya, Pakistan , 1989 .

[138]  T. Nakata,et al.  Active faults of the Himalaya of India and Nepal , 1989 .

[139]  J. Suppe,et al.  Mechanics, growth, and erosion of mountain belts , 1988 .

[140]  P. Zeitler,et al.  History of Uplift and Relief of the Himalaya During the Past 18 Million Years: Evidence from Fission-Track Ages of Detrital Zircons from Sandstones of the Siwalik Group , 1988 .

[141]  P. Molnar,et al.  Some simple physical aspects of the support, structure, and evolution of mountain belts , 1988 .

[142]  R. A. Price,et al.  The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains , 1981, Geological Society, London, Special Publications.

[143]  A. Jain,et al.  Tectonics and climate interplay : exhumation patterns of the Dhauladhar Range , Northwest Himalaya , 2022 .