Short-time persistence of bounded curvature under the Ricci flow

We use a first-order energy quantity to prove a strengthened statement of uniqueness for the Ricci flow. One consequence of this statement is that if a complete solution on a noncompact manifold has uniformly bounded Ricci curvature, then its sectional curvature will remain bounded for a short time if it is bounded initially. In other words, the Weyl curvature tensor of a complete solution to the Ricci flow cannot become unbounded instantaneously if the Ricci curvature remains bounded.

[1]  Alix Deruelle Unique continuation at infinity for conical Ricci expanders , 2015, 1507.02042.

[2]  Shaochuang Huang,et al.  Kähler-Ricci flow with unbounded curvature , 2015, 1506.00322.

[3]  Luigi Vezzoni,et al.  Second-Order Geometric Flows on Foliated Manifolds , 2015, 1505.03258.

[4]  Jason D. Lotay,et al.  Laplacian flow for closed G2 structures: Shi-type estimates, uniqueness and compactness , 2015, 1504.07367.

[5]  Alix Deruelle Smoothing out positively curved metric cones by Ricci expanders , 2015, 1502.07921.

[6]  Brett L. Kotschwar An Energy Approach to Uniqueness for Higher-Order Geometric Flows , 2014, 1501.00213.

[7]  C. Hilaire The Ricci Flow on Riemannian Groupoids , 2014, 1411.6058.

[8]  Luen-Fai Tam,et al.  Longtime existence of the K\"ahler-Ricci flow on $\Bbb C ^n$ , 2014, 1409.1906.

[9]  Luen-Fai Tam,et al.  Deforming complete Hermitian metrics with unbounded curvature , 2014, 1402.6722.

[10]  Xiaojie Wang,et al.  On Uniqueness of Complete Ricci Flow Solution with Curvature Bounded from Below , 2013, 1310.1611.

[11]  P. Topping Uniqueness of instantaneously complete Ricci flows , 2013, 1305.1905.

[12]  Frederick Tsz-Ho Fong,et al.  Rotational symmetry of conical Kähler–Ricci solitons , 2013, 1304.0277.

[13]  Otis Chodosh Expanding Ricci solitons asymptotic to cones , 2013, 1303.2983.

[14]  P. Topping,et al.  Ricci flows with bursts of unbounded curvature , 2013, 1302.5686.

[15]  Thomas Bell Uniqueness of conformal Ricci flow using energy methods , 2013, 1301.5052.

[16]  Brett L. Kotschwar An energy approach to the problem of uniqueness for the Ricci flow , 2012, 1206.3225.

[17]  Guoyi Xu,et al.  Local pinching estimates in 3-dim Ricci flow , 2012, 1206.1814.

[18]  Burkhard Wilking,et al.  How to produce a Ricci Flow via Cheeger-Gromoll exhaustion , 2011, 1107.0606.

[19]  P. Topping,et al.  Ricci flows with unbounded curvature , 2011, 1408.6866.

[20]  P. Topping Ricci flow compactness via pseudolocality, and flows with incomplete initial metrics , 2010 .

[21]  F. Schulze,et al.  Expanding solitons with non-negative curvature operator coming out of cones , 2010, 1008.1408.

[22]  P. Topping,et al.  Existence of Ricci Flows of Incomplete Surfaces , 2010, 1007.3146.

[23]  Li Ma,et al.  On the conditions to control curvature tensors of Ricci flow , 2010 .

[24]  Guoyi Xu Short-time existence of the Ricci flow on noncompact Riemannian manifolds , 2009, 0907.5604.

[25]  M. Simon,et al.  Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below , 2009, 0903.2142.

[26]  H. Koch,et al.  Geometric flows with rough initial data , 2009, 0902.1488.

[27]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[28]  B. Chow,et al.  The Ricci Flow: Techniques and Applications: Part II: Analytic Aspects , 2007 .

[29]  Bing-Long Chen,et al.  Strong Uniqueness of the Ricci Flow , 2007, 0706.3081.

[30]  F. Schulze,et al.  Stability of Euclidean space under Ricci flow , 2007, 0706.0421.

[31]  M. Simon Ricci flow of almost non-negatively curved three manifolds , 2006, math/0612095.

[32]  Xiping Zhu,et al.  Uniqueness of the Ricci flow on complete noncompact manifolds , 2005, math/0505447.

[33]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[34]  N. Šešum Curvature tensor under the Ricci flow , 2003, math/0311397.

[35]  S. Bando Real analyticity of solutions of Hamilton's equation , 1987 .

[36]  R. Greene,et al.  A NNALES SCIENTIFIQUES DE L ’ É . N . S . C ∞ approximations of convex, subharmonic, and plurisubharmonic functions , 2017 .

[37]  F. Zheng,et al.  $U(n)$-invariant Kähler–Ricci flow with non-negative curvature , 2013 .

[38]  M. Feldman,et al.  Rotationally symmetric shrinking and ex - panding gradient Kahler - Ricci solitons , 2003 .

[39]  M. Simon,et al.  Deformation of $C^0$ Riemannian metrics in the direction of their Ricci curvature , 2002 .

[40]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[41]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[42]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[43]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[44]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .