Fast-cure ionogel electrolytes with improved ion transport kinetics at room temperature

[1]  B. Dunn,et al.  Patternable, Solution-Processed Ionogels for Thin-Film Lithium-Ion Electrolytes , 2017 .

[2]  B. Kirchner,et al.  First examples of organosilica-based ionogels: synthesis and electrochemical behavior , 2017, Beilstein journal of nanotechnology.

[3]  Shiguo Zhang,et al.  Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. , 2017, Chemical reviews.

[4]  K. Cen,et al.  Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes , 2016 .

[5]  Marco-Tulio F. Rodrigues,et al.  Rate limiting activity of charge transfer during lithiation from ionic liquids , 2016 .

[6]  Chi-Chang Hu,et al.  Determination of the upper and lower potential limits of the activated carbon/propylene carbonate system for electrical double-layer capacitors , 2016 .

[7]  P. Taberna,et al.  Ionogel-based solid-state supercapacitor operating over a wide range of temperature , 2016 .

[8]  J. Jung,et al.  Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes , 2016 .

[9]  Kun Zhang,et al.  Interactions between Graphene and Ionic Liquid Electrolyte in Supercapacitors , 2016 .

[10]  B. Wei,et al.  Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors. , 2015, Nanoscale.

[11]  Seung M. Oh,et al.  Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors , 2014 .

[12]  Jinjun Zhang,et al.  Electrochemical Supercapacitors for Energy Storage and Conversion , 2014 .

[13]  Qiao Chen,et al.  Effect of different gel electrolytes on graphene-based solid-state supercapacitors , 2014 .

[14]  H. Satha,et al.  Textural, Structural and Electrical Characterizations of EMIMAc Silica Ionogels and Their Corresponding Aerogels , 2014 .

[15]  E. Mamontov,et al.  Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  S. Fletcher,et al.  A universal equivalent circuit for carbon-based supercapacitors , 2014, Journal of Solid State Electrochemistry.

[17]  C. Ramasamy,et al.  An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent , 2014, Journal of Solid State Electrochemistry.

[18]  E. Lust,et al.  Fluoroethylene Carbonate and Propylene Carbonate Mixtures Based Electrolytes for Supercapacitors , 2014 .

[19]  Andrea Balducci,et al.  Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid , 2013, Journal of Applied Electrochemistry.

[20]  E. Frąckowiak Electrode Materials with Pseudocapacitive Properties , 2013 .

[21]  Constantina Lekakou,et al.  Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC) , 2013 .

[22]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[23]  M. Panzer,et al.  High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications , 2012 .

[24]  Dor Ben-Amotz,et al.  Application of Raman Multivariate Curve Resolution to Solvation-Shell Spectroscopy , 2012, Applied spectroscopy.

[25]  Lydie Viau,et al.  Ionogels, ionic liquid based hybrid materials. , 2011, Chemical Society reviews.

[26]  F. Rius,et al.  Multivariate curve resolution–alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes , 2008, Analytical and bioanalytical chemistry.

[27]  A. Lewandowski,et al.  Practical and theoretical limits for electrochemical double-layer capacitors , 2007 .

[28]  Takeshi Abe,et al.  Temperature effects on the electrochemical behavior of spinel LiMn(2)O(4) in quaternary ammonium-based ionic liquid electrolyte. , 2005, The journal of physical chemistry. B.

[29]  Romà Tauler,et al.  A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB , 2005 .

[30]  Mao-Sung Wu,et al.  Assessment of the Wettability of Porous Electrodes for Lithium-Ion Batteries , 2004 .

[31]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[32]  B. Conway,et al.  Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations , 2000 .

[33]  R. Jerome,et al.  Intermolecular interactions in poly(vinylidene fluoride) and ε-caprolactam mixtures , 1996 .

[34]  David Jones High performance , 1989, Nature.

[35]  J. Jung,et al.  Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes , 2017 .

[36]  M. Deraman,et al.  Energy and Power of Supercapacitor Using Carbon Electrode Deposited with Nanoparticles Nickel Oxide , 2016, International Journal of Electrochemical Science.

[37]  T. Brousse,et al.  All Solid-State Symmetrical Activated Carbon Electrochemical Double Layer Capacitors Designed with Ionogel Electrolyte , 2014 .

[38]  C. Bogatu THE INFLUENCE OF PARAMETERS IN SILICA SOL-GEL PROCESS , 2011 .

[39]  C. Meunier,et al.  Influence of the synthesis route on sol–gel SiO2–TiO2 (1:1) xerogels and powders , 2008 .

[40]  G. Scherer Sintering of sol-gel films , 1997 .

[41]  B. Lee,et al.  Properties of silica gels prepared from high-acid hydrolysis of tetraethoxysilane , 1993 .