An Introduction to Multi-Point Flux (MPFA) and Stress (MPSA) Finite Volume Methods for Thermo-Poroelasticity

We give a unified introduction to the MPFA- and MPSA-type finite volume methods for Darcy flow and poro-elasticity, applicable to general polyhedral grids. This leads to a more systematic perspective of these methods than has been exposed in previous texts, and we therefore refer to this discretization family as the MPxA methods. We apply this MPxA framework to also define a consistent finite-volume discretization of thermo-poro-elasticity. In order to make the exposition accessible to a wide audience, we avoid much of the technical notation which is used in the research literature, and compensate for this by an expanded summary and literature review of the main properties of the MPxA methods. We close the chapter by a section containing applications to problems with complex geometries and non-linear physics.

[1]  Roland Masson,et al.  Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes , 2010 .

[2]  Yuanle Ma,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[3]  Mary F. Wheeler,et al.  Convergence of a symmetric MPFA method on quadrilateral grids , 2007 .

[4]  Jan M. Nordbotten,et al.  A Multipoint Stress Mixed Finite Element Method for Elasticity on Simplicial Grids , 2018, SIAM J. Numer. Anal..

[5]  JAN MARTIN NORDBOTTEN,et al.  Stable Cell-Centered Finite Volume Discretization for Biot Equations , 2015, SIAM J. Numer. Anal..

[6]  Michael G. Edwards,et al.  A Flux Continuous Scheme for the Full Tensor Pressure Equation , 1994 .

[7]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[8]  J. Bear Hydraulics of Groundwater , 1979 .

[9]  J. Z. Zhu,et al.  The finite element method , 1977 .

[10]  J. Nordbotten Cell‐centered finite volume discretizations for deformable porous media , 2014 .

[11]  G. T. Eigestad,et al.  On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .

[12]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[13]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[14]  Jan M. Nordbotten Convergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity , 2015, SIAM J. Numer. Anal..

[15]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[16]  Jan M. Nordbotten,et al.  Discretization on quadrilateral grids with improved monotonicity properties , 2005 .

[17]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[18]  Johannes Mykkeltveit,et al.  Symmetric Positive Definite Flux-Continuous Full-Tensor Finite-Volume Schemes on Unstructured Cell-Centered Triangular Grids , 2008, SIAM J. Sci. Comput..

[19]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[20]  T. F. Russell,et al.  Finite element and finite difference methods for continuous flows in porous media. , 1800 .

[21]  J. Nordbotten,et al.  Finite volume methods for elasticity with weak symmetry , 2015, 1512.01042.

[22]  Bradley T. Mallison,et al.  A compact multipoint flux approximation method with improved robustness , 2008 .

[23]  Florin A. Radu,et al.  Convergence of MPFA on triangulations and for Richards' equation , 2008 .

[24]  Mary F. Wheeler,et al.  A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..

[25]  Roland Masson,et al.  Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes , 2008 .

[26]  Bradley T. Mallison,et al.  A New Finite-Volume Approach to Efficient Discretization on Challenging Grids , 2010 .

[27]  L. Durlofsky Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities , 1994 .

[28]  R. LeVeque Numerical methods for conservation laws , 1990 .

[29]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Alessio Fumagalli,et al.  Unified approach to discretization of flow in fractured porous media , 2018, Computational Geosciences.

[32]  I. Aavatsmark,et al.  Discretization on Non-Orthogonal, Curvilinear Grids for Multi-Phase Flow , 1994 .

[33]  J. Nordbotten,et al.  On reproducing uniform flow exactly on general hexahedral cells using one degree of freedom per surface , 2009 .

[34]  Todd Arbogast,et al.  Two Families of H(div) Mixed Finite Elements on Quadrilaterals of Minimal Dimension , 2016, SIAM J. Numer. Anal..

[35]  A.P.S. Selvadurai,et al.  Thermo-Poroelasticity and Geomechanics , 2016 .

[36]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[37]  Dietrich Braess Finite Elements: Introduction , 2007 .

[38]  Xavier Raynaud,et al.  Comparison between cell-centered and nodal-based discretization schemes for linear elasticity , 2018, Computational Geosciences.

[39]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[40]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[41]  Ivar Aavatsmark,et al.  Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .

[42]  Alessio Fumagalli,et al.  PorePy: an open-source software for simulation of multiphysics processes in fractured porous media , 2019, Computational Geosciences.

[43]  Long Chen FINITE ELEMENT METHOD , 2013 .

[44]  Ragnar Winther,et al.  Robust convergence of multi point flux approximation on rough grids , 2006, Numerische Mathematik.

[45]  Alessio Fumagalli,et al.  Call for participation: Verification benchmarks for single-phase flow in three-dimensional fractured porous media. , 2018 .

[46]  Michael G. Edwards,et al.  Double-families of quasi-positive Darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids , 2010, J. Comput. Phys..

[47]  Michael G. Edwards Cross flow tensors and finite volume approximation with by deferred correction , 1998 .

[48]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[49]  Michael G. Edwards,et al.  Finite volume discretization with imposed flux continuity for the general tensor pressure equation , 1998 .

[50]  Ivar Aavatsmark,et al.  Interpretation of a two-point flux stencil for skew parallelogram grids , 2007 .

[51]  Jan M. Nordbotten,et al.  Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .

[52]  E. Hope,et al.  Elementare Bemerkungen über die Lösungen partieller differentialgleichungen zweiter Ordnung vom elliptischen Typus , 1927 .