暂无分享,去创建一个
[1] Roland Masson,et al. Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes , 2010 .
[2] Yuanle Ma,et al. Computational methods for multiphase flows in porous media , 2007, Math. Comput..
[3] Mary F. Wheeler,et al. Convergence of a symmetric MPFA method on quadrilateral grids , 2007 .
[4] Jan M. Nordbotten,et al. A Multipoint Stress Mixed Finite Element Method for Elasticity on Simplicial Grids , 2018, SIAM J. Numer. Anal..
[5] JAN MARTIN NORDBOTTEN,et al. Stable Cell-Centered Finite Volume Discretization for Biot Equations , 2015, SIAM J. Numer. Anal..
[6] Michael G. Edwards,et al. A Flux Continuous Scheme for the Full Tensor Pressure Equation , 1994 .
[7] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[8] J. Bear. Hydraulics of Groundwater , 1979 .
[9] J. Z. Zhu,et al. The finite element method , 1977 .
[10] J. Nordbotten. Cell‐centered finite volume discretizations for deformable porous media , 2014 .
[11] G. T. Eigestad,et al. On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .
[12] I. Aavatsmark,et al. An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .
[13] R. Eymard,et al. 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .
[14] Jan M. Nordbotten. Convergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity , 2015, SIAM J. Numer. Anal..
[15] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[16] Jan M. Nordbotten,et al. Discretization on quadrilateral grids with improved monotonicity properties , 2005 .
[17] Tsuyoshi Murata,et al. {m , 1934, ACML.
[18] Johannes Mykkeltveit,et al. Symmetric Positive Definite Flux-Continuous Full-Tensor Finite-Volume Schemes on Unstructured Cell-Centered Triangular Grids , 2008, SIAM J. Sci. Comput..
[19] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[20] T. F. Russell,et al. Finite element and finite difference methods for continuous flows in porous media. , 1800 .
[21] J. Nordbotten,et al. Finite volume methods for elasticity with weak symmetry , 2015, 1512.01042.
[22] Bradley T. Mallison,et al. A compact multipoint flux approximation method with improved robustness , 2008 .
[23] Florin A. Radu,et al. Convergence of MPFA on triangulations and for Richards' equation , 2008 .
[24] Mary F. Wheeler,et al. A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..
[25] Roland Masson,et al. Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes , 2008 .
[26] Bradley T. Mallison,et al. A New Finite-Volume Approach to Efficient Discretization on Challenging Grids , 2010 .
[27] L. Durlofsky. Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities , 1994 .
[28] R. LeVeque. Numerical methods for conservation laws , 1990 .
[29] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[30] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[31] Alessio Fumagalli,et al. Unified approach to discretization of flow in fractured porous media , 2018, Computational Geosciences.
[32] I. Aavatsmark,et al. Discretization on Non-Orthogonal, Curvilinear Grids for Multi-Phase Flow , 1994 .
[33] J. Nordbotten,et al. On reproducing uniform flow exactly on general hexahedral cells using one degree of freedom per surface , 2009 .
[34] Todd Arbogast,et al. Two Families of H(div) Mixed Finite Elements on Quadrilaterals of Minimal Dimension , 2016, SIAM J. Numer. Anal..
[35] A.P.S. Selvadurai,et al. Thermo-Poroelasticity and Geomechanics , 2016 .
[36] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[37] Dietrich Braess. Finite Elements: Introduction , 2007 .
[38] Xavier Raynaud,et al. Comparison between cell-centered and nodal-based discretization schemes for linear elasticity , 2018, Computational Geosciences.
[39] Thomas J. R. Hughes,et al. The Continuous Galerkin Method Is Locally Conservative , 2000 .
[40] Ivar Aavatsmark,et al. Monotonicity of control volume methods , 2007, Numerische Mathematik.
[41] Ivar Aavatsmark,et al. Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .
[42] Alessio Fumagalli,et al. PorePy: an open-source software for simulation of multiphysics processes in fractured porous media , 2019, Computational Geosciences.
[43] Long Chen. FINITE ELEMENT METHOD , 2013 .
[44] Ragnar Winther,et al. Robust convergence of multi point flux approximation on rough grids , 2006, Numerische Mathematik.
[45] Alessio Fumagalli,et al. Call for participation: Verification benchmarks for single-phase flow in three-dimensional fractured porous media. , 2018 .
[46] Michael G. Edwards,et al. Double-families of quasi-positive Darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids , 2010, J. Comput. Phys..
[47] Michael G. Edwards. Cross flow tensors and finite volume approximation with by deferred correction , 1998 .
[48] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[49] Michael G. Edwards,et al. Finite volume discretization with imposed flux continuity for the general tensor pressure equation , 1998 .
[50] Ivar Aavatsmark,et al. Interpretation of a two-point flux stencil for skew parallelogram grids , 2007 .
[51] Jan M. Nordbotten,et al. Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation , 2011 .
[52] E. Hope,et al. Elementare Bemerkungen über die Lösungen partieller differentialgleichungen zweiter Ordnung vom elliptischen Typus , 1927 .