Nonlinear time series analysis of jerk congenital nystagmus

Nonlinear dynamics provides a complementary framework to control theory for the quantitative analysis of the oculomotor control system. This paper presents a number of findings relating to the aetiology and mechanics of the pathological ocular oscillation jerk congenital nystagmus (jerk CN). A range of time series analysis techniques were applied to recorded jerk CN waveforms, and also to simulated jerk waveforms produced by an established model in which the oscillations are a consequence of an unstable neural integrator. The results of the analysis were then interpreted within the framework of a generalised model of the unforced oculomotor system.This work suggests that for jerk oscillations, the origin of the instability lies in one of the five oculomotor subsystems, rather than in the final common pathway (the neural integrator and muscle plant). Additionally, experimental estimates of the linearised foveation dynamics imply that a refixating fast phase induced by a near-homoclinic trajectory will result in periodic oscillations. Local dimension calculations show that the dimension of the experimental jerk CN data increases during the fast phase, indicating that the oscillations are not periodic, and hence that the refixation mechanism is of greater complexity than a homoclinic reinjection. The dimension increase is hypothesised to result either from a signal-dependent noise process in the saccadic system, or the activation of additional oculomotor components at the beginning of the fast phase. The modification of a recent saccadic system model to incorporate biologically realistic signal-dependent noise is suggested, in order to test the first of these hypotheses.

[1]  David S. Broomhead,et al.  Characterisation of congenital nystagmus waveforms in terms of periodic orbits , 2002, Vision Research.

[2]  Richard V Abadi,et al.  Motor and sensory characteristics of infantile nystagmus , 2002, The British journal of ophthalmology.

[3]  David S. Broomhead,et al.  Modelling of congenital nystagmus waveforms produced by saccadic system abnormalities , 2000, Biological Cybernetics.

[4]  H. Seung,et al.  Linear regression of eye velocity on eye position and head velocity suggests a common oculomotor neural integrator. , 2002, Journal of neurophysiology.

[5]  R. B. Daroff,et al.  Congenital nystagmus waveforms and foveation strategy , 1975, Documenta Ophthalmologica.

[6]  R. W. Ditchburn Eye-movements and visual perception , 1973 .

[7]  Richard V Abadi,et al.  Waveform characteristics in congenital nystagmus , 1987, Documenta Ophthalmologica.

[8]  S. Gielen,et al.  A quantitative analysis of generation of saccadic eye movements by burst neurons. , 1981, Journal of neurophysiology.

[9]  A. B. Rami Shani,et al.  Matrices: Methods and Applications , 1992 .

[10]  P. Matthews Relationship of firing intervals of human motor units to the trajectory of post‐spike after‐hyperpolarization and synaptic noise. , 1996, The Journal of physiology.

[11]  Richard V Abadi,et al.  VISUAL RESOLUTION IN CONGENITAL PENDULAR NYSTAGMUS* , 1975, American journal of optometry and physiological optics.

[12]  W. Becker,et al.  Accuracy of saccadic eye movements and maintenance of eccentric eye positions in the dark. , 1973, Vision research.

[13]  David S. Broomhead,et al.  The origins of chaos in a modified Van der Pol oscillator , 1991 .

[14]  D. Zee,et al.  Effects of ablation of flocculus and paraflocculus of eye movements in primate. , 1981, Journal of neurophysiology.

[15]  David S Broomhead,et al.  A new framework for investigating both normal and abnormal eye movements. , 2002, Progress in brain research.

[16]  David S. Broomhead,et al.  Periodic Forcing of Congenital Nystagmus , 2002 .

[17]  Mark Shelhamer,et al.  On the correlation dimension of optokinetic nystagmus eye movements: computational parameters, filtering, nonstationarity, and surrogate data , 1997, Biological Cybernetics.

[18]  C. Harris Problems in modelling congenital nystagmus: Towards a new model , 1995 .

[19]  A. Zinober Matrices: Methods and Applications , 1992 .

[20]  N. Shimizu [Neurology of eye movements]. , 2000, Rinsho shinkeigaku = Clinical neurology.

[21]  R A Clement,et al.  Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system , 2005, Journal of mathematical biology.

[22]  J. Huke Embedding Nonlinear Dynamical Systems: A Guide to Takens' Theorem , 2006 .

[23]  D. Robinson,et al.  Is the oculomotor system a cartoon of motor control? , 1986, Progress in brain research.

[24]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[25]  J. Stark,et al.  Delay Embeddings for Forced Systems. I. Deterministic Forcing , 1999 .

[26]  L. Dell’Osso,et al.  Congenital nystagmus: hypotheses for its genesis and complex waveforms within a behavioral ocular motor system model. , 2004, Journal of vision.

[27]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[28]  Stephen Grossberg,et al.  A neural model of the saccade generator in the reticular formation , 1998, Neural Networks.

[29]  George K. Hung,et al.  Models of the visual system , 2002 .

[30]  Richard V Abadi,et al.  Retinal slip velocities in congenital nystagmus , 1989, Vision Research.

[31]  Martin Casdagli,et al.  An analytic approach to practical state space reconstruction , 1992 .

[32]  D. Robinson The mechanics of human saccadic eye movement , 1964, The Journal of physiology.

[33]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[34]  F. Takens Detecting strange attractors in turbulence , 1981 .

[35]  Ozgur Akman Analysis of a nonlinear dynamics model of the saccadic system , 2003 .

[36]  R. Carpenter,et al.  Movements of the Eyes , 1978 .

[37]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[38]  D. Robinson,et al.  Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. , 1987, Journal of neurophysiology.

[39]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[40]  R. Tusa,et al.  Voluntary control of congenital nystagmus , 1992 .

[41]  B. Cohen,et al.  Eye movements induced by stimulation of the pontine reticular formation: evidence for integration in oculomotor pathways. , 1972, Experimental neurology.

[42]  D. Robinson Eye Movement Control in Primates , 1968 .

[43]  L. Optican,et al.  A hypothetical explanation of congenital nystagmus , 1984, Biological Cybernetics.

[44]  Michael J. Kirby,et al.  Estimation of Topological Dimension , 2003, SDM.

[45]  Sarben Sarkar,et al.  Nonlinear phenomena and chaos , 1986 .

[46]  H. Wilson Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience , 1999 .

[47]  H. Clamann Statistical analysis of motor unit firing patterns in a human skeletal muscle. , 1969, Biophysical journal.

[48]  H. Bedell,et al.  Interrelations between measures of visual acuity and parameters of eye movement in congenital nystagmus. , 1991, Investigative ophthalmology & visual science.

[49]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[50]  S. McKee,et al.  Visual acuity in the presence of retinal-image motion. , 1975, Journal of the Optical Society of America.

[51]  R. A. Clement,et al.  Dynamical systems analysis: a new method of analysing congenital nystagmus waveforms , 1997, Experimental Brain Research.

[52]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986, Encyclopedia of Big Data.

[53]  B. Nevitt,et al.  Coping With Chaos , 1991, Proceedings of the 1991 International Symposium on Technology and Society - ISTAS `91.

[54]  Daniel M. Wolpert,et al.  Signal-dependent noise determines motor planning , 1998, Nature.

[55]  Paul Glendinning,et al.  Stability, instability and chaos , by Paul Glendinning. Pp. 402. £45. 1994. ISBN 0 521 41553 5 (hardback); £17.95 ISBN 0 521 42566 2 (paperback) (Cambridge). , 1997, The Mathematical Gazette.

[56]  Yachen Lin,et al.  Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns , 2002, Technometrics.

[57]  Robert W. Kentridge,et al.  Eye movement research : mechanisms, processes and applications , 1995 .

[58]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[59]  Richard A. Clement,et al.  Periodic orbit analysis reveals subtle effects of atropine on epileptiform activity in the guinea-pig hippocampal slice , 2004, Neuroscience Letters.