The ANSTO – University of Wollongong in-situ 14C extraction laboratory

[1]  L. Wacker,et al.  Progress report on a novel in situ 14C extraction scheme at the University of Cologne , 2015 .

[2]  Andrew M. Smith,et al.  Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples , 2015 .

[3]  R. Wieler,et al.  Depth-dependence of the production rate of in situ 14C in quartz from the Leymon High core, Spain , 2015 .

[4]  D. Fabel,et al.  Quantifying soil loss with in-situ cosmogenic 10Be and 14C depth-profiles , 2015 .

[5]  E. Scott,et al.  The CRONUS-Earth inter-comparison for cosmogenic isotope analysis , 2015 .

[6]  N. Lifton,et al.  Calculating Isotope Ratios and Nuclide Concentrations for In Situ Cosmogenic 14C Analyses , 2014, Radiocarbon.

[7]  Brent M. Goehring,et al.  Capabilities of the LamonteDoherty Earth Observatory in situ 14 C extraction laboratory updated , 2014 .

[8]  H. Synal,et al.  Improving a gas ion source for 14C AMS , 2013 .

[9]  H. Synal,et al.  A versatile gas interface for routine radiocarbon analysis with a gas ion source , 2013 .

[10]  R. Wieler,et al.  Quantifying denudation rates and sediment storage on the eastern Altiplano, Bolivia, using cosmogenic 10Be, 26Al, and in situ 14C , 2012 .

[11]  B. Goehring Capabilities of the Lamont-Doherty Earth Observatory in situ cosmogenic 14C extraction laboratory updated , 2012 .

[12]  B. Salcher,et al.  Debris-flow–dependent variation of cosmogenically derived catchment-wide denudation rates , 2012 .

[13]  G. Balco Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010 , 2011 .

[14]  Q. Hua,et al.  Developments in micro-sample 14C AMS at the ANTARES AMS facility , 2010 .

[15]  D. Fabel,et al.  Update on the Performance of the SUERC In Situ Cosmogenic 14C Extraction Line , 2010, Radiocarbon.

[16]  A. Smith,et al.  Laser-Heated Microfurnace: Gas Analysis and Graphite Morphology , 2010, Radiocarbon.

[17]  R. Wieler,et al.  The current performance of the in situ 14C extraction line at ETH , 2009 .

[18]  Q. Hua,et al.  The ANTARES AMS facility at ANSTO , 2004 .

[19]  De-Hao Tsai,et al.  CO Oxidation Behavior of Copper and Copper Oxides , 2003 .

[20]  J. Quade,et al.  A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz , 2001 .

[21]  A. Jull,et al.  Studies of cosmogenic in-situ 14CO and 14CO2 produced in terrestrial and extraterrestrial samples: experimental procedures and applications , 1994 .

[22]  F. Pineau,et al.  Strong degassing at ridge crests: the behaviour of dissolved carbon and water in basalt glasses at 14°N, Mid-Atlantic Ridge , 1994 .

[23]  Yasunori Miura,et al.  14 C terrestrial ages of nine Antarctic meteorites using CO and CO 2 temperature extractions , 1993 .

[24]  K. Nishiizumi,et al.  Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides , 1992 .

[25]  D. Donahue,et al.  Carbon-14 activities in recently fallen meteorites and Antarctic meteorites , 1989 .

[26]  David J. Des Marais,et al.  Carbon and its isotopes in mid-oceanic basaltic glasses , 1984 .

[27]  H. R. Andrews,et al.  14C content of ten meteorites measured by tandem accelerator mass spectrometry , 1984 .

[28]  D. D. Marais Light element geochemistry and spallogenesis in lunar rocks , 1983 .

[29]  E. Bruce Watson,et al.  Diffusion of dissolved carbonate in magmas: Experimental results and applications , 1982 .