A cut-free calculus for second-order Gödel logic

Abstract We prove that the extension of the known hypersequent calculus for standard first-order Godel logic with usual rules for second-order quantifiers is sound and (cut-free) complete for Henkin-style semantics for second-order Godel logic. The proof is semantic, and it is similar in nature to Schutte and Tait's proof of Takeuti's conjecture.

[1]  D. Gabbay,et al.  Proof theory for fuzzy logics. Applied Logic Series, vol. 36 , 2010 .

[2]  Ori Lahav,et al.  Semantic investigation of canonical Gödel hypersequent systems , 2016, J. Log. Comput..

[3]  Christian G. Fermüller,et al.  Hypersequent Calculi for Gödel Logics - a Survey , 2003, J. Log. Comput..

[4]  Satoko Titani A Proof of the Cut-Elimination Theorem in Simple Type Theory , 1973, J. Symb. Log..

[5]  J. Avigad Proof Theory , 2017, 1711.01994.

[6]  W. W. Tait,et al.  A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .

[7]  J. Girard Proof Theory and Logical Complexity , 1989 .

[8]  P. Cintula,et al.  GENERAL LOGICAL FORMALISM FOR FUZZY MATHEMATICS : METHODOLOGY AND APPARATUS ∗ , 2005 .

[9]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[10]  Anna Zamansky,et al.  Canonical Calculi with (n, k)-ary Quantifiers , 2008, Log. Methods Comput. Sci..

[11]  Kurt Schütte,et al.  Syntactical and Semantical Properties of Simple Type Theory , 1960, J. Symb. Log..

[12]  Petr Cintula,et al.  Herbrand Theorems for Substructural Logics , 2013, LPAR.

[13]  Dag Prawitz Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..

[14]  Petr Hájek,et al.  Handbook of mathematical fuzzy logic , 2011 .

[15]  D. Gabbay,et al.  Proof Theory for Fuzzy Logics , 2008 .

[16]  Arnon Avron,et al.  Hypersequents, logical consequence and intermediate logics for concurrency , 1991, Annals of Mathematics and Artificial Intelligence.

[17]  Gaisi Takeuti,et al.  On a generalized logic calculus , 1953 .

[18]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[19]  Matthias Baaz,et al.  Hypersequent and the Proof Theory of Intuitionistic Fuzzy Logic , 2000, CSL.

[20]  Vilém Novák,et al.  On fuzzy type theory , 2005, Fuzzy Sets Syst..

[21]  Petr Cintula,et al.  Fuzzy class theory , 2005, Fuzzy Sets Syst..

[22]  Christian G. Fermüller,et al.  Handbook of Mathematical Fuzzy Logic - Volume 3 , 2015 .

[23]  Ori Lahav,et al.  A semantic proof of strong cut-admissibility for first-order Gödel logic , 2013, J. Log. Comput..