A cut-free calculus for second-order Gödel logic
暂无分享,去创建一个
Ori Lahav | Arnon Avron | A. Avron | O. Lahav
[1] D. Gabbay,et al. Proof theory for fuzzy logics. Applied Logic Series, vol. 36 , 2010 .
[2] Ori Lahav,et al. Semantic investigation of canonical Gödel hypersequent systems , 2016, J. Log. Comput..
[3] Christian G. Fermüller,et al. Hypersequent Calculi for Gödel Logics - a Survey , 2003, J. Log. Comput..
[4] Satoko Titani. A Proof of the Cut-Elimination Theorem in Simple Type Theory , 1973, J. Symb. Log..
[5] J. Avigad. Proof Theory , 2017, 1711.01994.
[6] W. W. Tait,et al. A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .
[7] J. Girard. Proof Theory and Logical Complexity , 1989 .
[8] P. Cintula,et al. GENERAL LOGICAL FORMALISM FOR FUZZY MATHEMATICS : METHODOLOGY AND APPARATUS ∗ , 2005 .
[9] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[10] Anna Zamansky,et al. Canonical Calculi with (n, k)-ary Quantifiers , 2008, Log. Methods Comput. Sci..
[11] Kurt Schütte,et al. Syntactical and Semantical Properties of Simple Type Theory , 1960, J. Symb. Log..
[12] Petr Cintula,et al. Herbrand Theorems for Substructural Logics , 2013, LPAR.
[13] Dag Prawitz. Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..
[14] Petr Hájek,et al. Handbook of mathematical fuzzy logic , 2011 .
[15] D. Gabbay,et al. Proof Theory for Fuzzy Logics , 2008 .
[16] Arnon Avron,et al. Hypersequents, logical consequence and intermediate logics for concurrency , 1991, Annals of Mathematics and Artificial Intelligence.
[17] Gaisi Takeuti,et al. On a generalized logic calculus , 1953 .
[18] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[19] Matthias Baaz,et al. Hypersequent and the Proof Theory of Intuitionistic Fuzzy Logic , 2000, CSL.
[20] Vilém Novák,et al. On fuzzy type theory , 2005, Fuzzy Sets Syst..
[21] Petr Cintula,et al. Fuzzy class theory , 2005, Fuzzy Sets Syst..
[22] Christian G. Fermüller,et al. Handbook of Mathematical Fuzzy Logic - Volume 3 , 2015 .
[23] Ori Lahav,et al. A semantic proof of strong cut-admissibility for first-order Gödel logic , 2013, J. Log. Comput..