Calcium-binding proteins in the nervous system

[1]  Paul A. Khavari,et al.  BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription , 1993, Nature.

[2]  C. Heizmann,et al.  Changes in Ca2+-binding proteins in human neurodegenerative disorders , 1992, Trends in Neurosciences.

[3]  J. Rogers,et al.  Calretinin in rat brain: An immunohistochemical study , 1992, Neuroscience.

[4]  J. Nagy,et al.  Cytochrome oxidase immunohistochemistry in rat brain and dorsal root ganglia: Visualization of enzyme in neuronal perikarya and in parvalbumin-positive neurons , 1991, Neuroscience.

[5]  D. Jacobowitz,et al.  Calretinin, a neuronal calcium binding protein, inhibits phosphorylation of a 39 kDa synaptic membrane protein from rat brain cerebral cortex , 1991, Neuroscience Letters.

[6]  D. Jacobowitz,et al.  Immunohistochemical localization of calretinin in the rat hindbrain , 1991, The Journal of comparative neurology.

[7]  J. Morrison,et al.  Parvalbumin‐lmmunoreactive Neurons in the Neocortex are Resistant to Degeneration in Alzheimer's Disease , 1991, Journal of neuropathology and experimental neurology.

[8]  N. Barbaro,et al.  Calcium‐binding protein (calbindin‐D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus , 1991, The Journal of comparative neurology.

[9]  A. Hendrickson,et al.  Development of the calcium‐binding proteins parvalbumin and calbindin in monkey striate cortex , 1991, The Journal of comparative neurology.

[10]  H. T. Chang,et al.  Relationship of calbindin D-28k and cholinergic neurons in the nucleus basalis of Meynert of the monkey and the rat , 1991, Brain Research.

[11]  R. Faull,et al.  Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins , 1991, Brain Research.

[12]  K. Koch,et al.  A 26 kd calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. , 1991, The EMBO journal.

[13]  J. Tigges,et al.  Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation , 1991, Visual Neuroscience.

[14]  H. Mclennan,et al.  Bursting response to current‐evoked depolarization in rat ca1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin‐D28k , 1991, Synapse.

[15]  D. Lowenstein,et al.  Up regulation of calbindin-D28K mRNA in the rat hippocampus following focal stimulation of the perforant path , 1991, Neuron.

[16]  S. Hendry,et al.  GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium binding proteins , 1991, Brain Research.

[17]  J. Morrison,et al.  Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer's disease , 1991, Experimental Neurology.

[18]  J B Hurley,et al.  Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase , 1991, Science.

[19]  D. Jacobowitz,et al.  Immunocytochemical localization of calretinin in the forebrain of the rat , 1991, The Journal of comparative neurology.

[20]  M. Mattson,et al.  Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-1328k in cultured hippocampal neurons , 1991, Neuron.

[21]  E. G. Jones,et al.  Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  C. Heizmann Novel Calcium-Binding Proteins , 1991, Springer Berlin Heidelberg.

[23]  E. G. Jones,et al.  A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons , 1990, Neuroscience.

[24]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[25]  J. Morrison,et al.  Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans , 1990, The Journal of comparative neurology.

[26]  R. Nitsch,et al.  Proportion of parvalbumin‐positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation , 1990, The Journal of comparative neurology.

[27]  M. Frotscher,et al.  Late appearance of parvalbumin-immunoreactivity in the development of GABAergic neurons in the rat hippocampus , 1990, Neuroscience Letters.

[28]  M. Frotscher,et al.  Most somatostatin-immunoreactive neurons in the rat fascia dentata do not contain the calcium-binding protein parvalbumin , 1990, Brain Research.

[29]  P. Mcgeer,et al.  Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K , 1990, Brain Research.

[30]  P. Emson,et al.  Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington's disease , 1990, Brain Research.

[31]  C. Heizmann,et al.  Coexistence of parvalbumin and glycine in the rat brainstem , 1990, Brain Research.

[32]  D. Choi,et al.  Cortical neurons containing somatostatin‐ or parvalbumin‐like immunoreactivity are atypically vulnerable to excitotoxic injury in vitro , 1990, Neurology.

[33]  A. Hendrickson,et al.  Calcium‐binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex , 1990, The Journal of comparative neurology.

[34]  F. Blachier,et al.  Calbindin and calretinin localization in retina from different species , 1990, Visual Neuroscience.

[35]  S. Christakos,et al.  Corticosterone regulates calbindin-D28k mRNA and protein levels in rat hippocampus. , 1990, The Journal of biological chemistry.

[36]  P. Bauer,et al.  Ca2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin. , 1990, The Journal of biological chemistry.

[37]  T. Freund,et al.  Calcium‐binding proteins, parvalbumin‐ and calbindin‐D 28k‐immunoreactive neurons in the rat spinal cord and dorsal root ganglia: A light and electron microscopic study , 1990, The Journal of comparative neurology.

[38]  E. Jones,et al.  Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins , 1990, Journal of neurocytology.

[39]  A. Norman,et al.  Regulation of calbindin‐D28K gene expression by 1,25‐dihydroxyvitamin D3 in chick kidney , 1990, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[40]  J. Lund,et al.  Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populations , 1990, The Journal of comparative neurology.

[41]  K. Goto,et al.  Visinin: A novel calcium binding protein expressed in retinal cone cells , 1990, Neuron.

[42]  M. Parmentier,et al.  Structure of the human cDNAs and genes coding for calbindin D28K and calretinin. , 1990, Advances in experimental medicine and biology.

[43]  K. Braun,et al.  Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. , 1990, Progress in histochemistry and cytochemistry.

[44]  B. Droz,et al.  Inducing effect of skeletal muscle extracts on the appearance of calbindin-immunoreactive dorsal root ganglion cells in culture , 1989, Neuroscience.

[45]  A. Persechini,et al.  The EF-hand family of calcium-modulated proteins , 1989, Trends in Neurosciences.

[46]  J. Nagy,et al.  Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content , 1989, Neuroscience.

[47]  J. Nagy,et al.  Parvalbumin- and calbindin D28k-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat , 1989, Brain Research Bulletin.

[48]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[49]  C. Nitsch,et al.  GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2+-binding protein parvalbumin , 1989, Neuroscience Letters.

[50]  H. Scharfman,et al.  Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. , 1989, Science.

[51]  J. Nagy,et al.  Parvalbumin is highly colocalized with calbindin D28k and rarely with calcitonin gene-related peptide in dorsal root ganglia neurons of rat , 1989, Brain Research.

[52]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[53]  B. Droz,et al.  Maintenance of neuronal expression of calbindin by a muscular extract in cultures of chick dorsal root ganglion cells , 1989, Neuroscience Letters.

[54]  M. Thomasset,et al.  Effects of altered thyroid states and undernutrition on the calbindin-D28K (calcium-binding protein) content of the hippocampal formation in the developing rat , 1989, Brain Research.

[55]  A. Means,et al.  The presence of parvalbumin in a nonmuscle cell line attenuates progression through mitosis. , 1989, Molecular endocrinology.

[56]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[57]  F. D. Silva,et al.  Kindling induced changes in parvalbumin immunoreactivity in rat hippocampus and its relation to long-term decrease in GABA-immunoreactivity , 1989, Brain Research.

[58]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[59]  C. Heizmann,et al.  Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain, demonstrated by parvalbumin immunohistochemistry , 1988, Neuroscience.

[60]  R. Nicoll,et al.  The coupling of neurotransmitter receptors to ion channels in the brain. , 1988, Science.

[61]  B. Droz,et al.  Influence of peripheral and central targets on subpopulations of sensory neurons expressing calbindin immunoreactivity in the dorsal root ganglion of the chick embryo , 1988, Neuroscience.

[62]  G A Orban,et al.  Heterogeneity of GABAergic cells in cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  W. Singer,et al.  Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: Evidence for coexistence with GABA , 1988, The Journal of comparative neurology.

[64]  M. Thomasset,et al.  Cholecalcin (28-kDa calcium-binding protein) in the rat hippocampus: development in normal animals and in altered thyroid states. An immunocytochemical study. , 1987, Developmental biology.

[65]  H. Katsumaru,et al.  GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus , 1987, Brain Research.

[66]  J. Rogers Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons [published erratum appears in J Cell Biol 1990 May;110(5):1845] , 1987, The Journal of cell biology.

[67]  P. Emson,et al.  Loss of parvalbumin-immunoreactive neurones from cortex in Alzheimer-type dementia , 1987, Brain Research.

[68]  Yasuo Kawaguchi,et al.  Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin , 1987, Brain Research.

[69]  T. Kosaka,et al.  An aspect of the organizational principle of the γ-aminobutyric acidergic system in the cerebral cortex , 1987, Brain Research.

[70]  I. Módy,et al.  Distribution of Calbindin-D28K (CaBP) in the cerebral cortex and hippocampus of the epileptic (E1) mouse , 1987, Epilepsy Research.

[71]  C. Kung,et al.  Restoration by calmodulin of a Ca2+-dependent K+ current missing in a mutant of Paramecium. , 1986, Science.

[72]  M. Celio,et al.  Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. , 1986, Science.

[73]  I. Módy,et al.  Reduction of Rat Hippocampal Calcium‐Binding Protein Following Commissural, Amygdala, Septal, Perforant Path, and Olfactory Bulb Kindling , 1985, Epilepsia.

[74]  D. Lawson,et al.  Target cells of vitamin D in the vertebrate retina. , 1985, Acta anatomica.

[75]  J. Miller,et al.  Hippocampal calcium-binding protein during commissural kindling-induced epileptogenesis: Progressive decline and effects of anticonvulsants , 1984, Brain Research.

[76]  R. Klevit,et al.  The calcium receptor and trigger , 1984 .

[77]  J. Miller,et al.  Biochemical and immunohistochemical correlates of kindling-induced epilepsy: role of calcium binding protein , 1983, Brain Research.

[78]  L. Maler,et al.  Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain , 1981, Nature.

[79]  W. Y. Cheung,et al.  Calmodulin plays a pivotal role in cellular regulation. , 1980, Science.