Proton transfer in ba(3) cytochrome c oxidase from Thermus thermophilus.

[1]  M. Wikström,et al.  The D-channel of cytochrome oxidase: an alternative view. , 2011, Biochimica et biophysica acta.

[2]  A. Warshel,et al.  Proton-transport mechanisms in cytochrome c oxidase revealed by studies of kinetic isotope effects. , 2011, Biochimica et Biophysica Acta.

[3]  James Hemp,et al.  Adaptation of aerobic respiration to low O2 environments , 2011, Proceedings of the National Academy of Sciences.

[4]  Wei Liu,et al.  High Resolution Structure of the ba3 Cytochrome c Oxidase from Thermus thermophilus in a Lipidic Environment , 2011, PloS one.

[5]  R. Gennis,et al.  Kinetic design of the respiratory oxidases , 2011, Proceedings of the National Academy of Sciences.

[6]  L. Qin,et al.  Crystallographic and online spectral evidence for role of conformational change and conserved water in cytochrome oxidase proton pump , 2011, Proceedings of the National Academy of Sciences.

[7]  Ville R. I. Kaila,et al.  Proton-coupled electron transfer in cytochrome oxidase. , 2010, Chemical reviews.

[8]  R. Gennis,et al.  Functional role of Thr-312 and Thr-315 in the proton-transfer pathway in ba3 Cytochrome c oxidase from Thermus thermophilus. , 2010, Biochemistry.

[9]  A. Johansson,et al.  Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase. , 2010, Biochimica et biophysica acta.

[10]  R. Gennis,et al.  Blocking the K-pathway still allows rapid one-electron reduction of the binuclear center during the anaerobic reduction of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides. , 2010, Biochimica et biophysica acta.

[11]  Ville R. I. Kaila,et al.  Mechanism and energetics by which glutamic acid 242 prevents leaks in cytochrome c oxidase. , 2009, Biochimica et biophysica acta.

[12]  R. Gennis,et al.  The cytochrome ba3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping , 2009, Proceedings of the National Academy of Sciences.

[13]  S. Yoshikawa,et al.  A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump , 2009, Proceedings of the National Academy of Sciences.

[14]  R. Gennis,et al.  Cytochrome c oxidase: exciting progress and remaining mysteries , 2008, Journal of bioenergetics and biomembranes.

[15]  C David Stout,et al.  Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme-Cu oxidases. , 2008, Biochemistry.

[16]  P. Brzezinski,et al.  Deuterium isotope effect of proton pumping in cytochrome c oxidase. , 2008, Biochimica et biophysica acta.

[17]  I. Belevich,et al.  Molecular mechanism of proton translocation by cytochrome c oxidase. , 2008, Antioxidants & redox signaling.

[18]  James Hemp,et al.  Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling. , 2008, Results and problems in cell differentiation.

[19]  M. Wikström,et al.  Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus. , 2007, Biochimica et biophysica acta.

[20]  M. Wikström,et al.  Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. , 2007, Biochimica et biophysica acta.

[21]  Takashi Sugimura,et al.  Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase , 2007, The EMBO journal.

[22]  M. Suematsu,et al.  The proton pumping pathway of bovine heart cytochrome c oxidase , 2007, Proceedings of the National Academy of Sciences.

[23]  Anne Mulichak,et al.  Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase , 2006, Proceedings of the National Academy of Sciences.

[24]  S. Ferguson-Miller,et al.  Energy transduction: proton transfer through the respiratory complexes. , 2006, Annual review of biochemistry.

[25]  P. Brzezinski,et al.  A mechanistic principle for proton pumping by cytochrome c oxidase , 2005, Nature.

[26]  B. Schmidt,et al.  The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase. , 2005, Biochemistry.

[27]  C. Stout,et al.  A novel cryoprotection scheme for enhancing the diffraction of crystals of recombinant cytochrome ba3 oxidase from Thermus thermophilus. , 2005, Acta crystallographica. Section D, Biological crystallography.

[28]  P. Brzezinski,et al.  Structural elements involved in electron‐coupled proton transfer in cytochrome c oxidase , 2004, FEBS letters.

[29]  I. Szundi,et al.  Time-resolved optical absorption studies of cytochrome oxidase dynamics. , 2004, Biochimica et biophysica acta.

[30]  A. Puustinen,et al.  The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Katsonouri,et al.  Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase. , 2003, Biochemistry.

[32]  R. Gennis,et al.  The entry point of the K-proton-transfer pathway in cytochrome c oxidase. , 2002, Biochemistry.

[33]  S. Iwata,et al.  The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. , 2002, Journal of molecular biology.

[34]  Manuela M. Pereira,et al.  A novel scenario for the evolution of haem-copper oxygen reductases. , 2001, Biochimica et biophysica acta.

[35]  R. Gennis,et al.  On the role of the K-proton transfer pathway in cytochrome c oxidase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Puustinen,et al.  The role of the D- and K-pathways of proton transfer in the function of the haem-copper oxidases. , 2000, Biochimica et biophysica acta.

[37]  R. Huber,et al.  Structure and mechanism of the aberrant ba3‐cytochrome c oxidase from Thermus thermophilus , 2000, The EMBO journal.

[38]  Time-resolved generation of a membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear center. , 1999, FEBS letters.

[39]  R. Gennis,et al.  Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation. , 1999, Biochemistry.

[40]  M. Wikström,et al.  Assignment and charge translocation stoichiometries of the major electrogenic phases in the reaction of cytochrome c oxidase with dioxygen. , 1999, Biochemistry.

[41]  M. Brunori,et al.  Kinetic properties of ba3 oxidase from Thermus thermophilus: effect of temperature. , 1999, Biochemistry.

[42]  S. Ferguson-Miller,et al.  Proton uptake controls electron transfer in cytochrome c oxidase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  P. Brzezinski,et al.  Factors determining electron-transfer rates in cytochrome c oxidase: investigation of the oxygen reaction in the R. sphaeroides enzyme. , 1998, Biochimica et biophysica acta.

[44]  E. Bamberg,et al.  Electrical current generation and proton pumping catalyzed by the ba 3‐type cytochrome c oxidase from Thermus thermophilus , 1998, FEBS letters.

[45]  R. Gennis,et al.  The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Ferguson-Miller,et al.  Heme/Copper Terminal Oxidases. , 1996, Chemical reviews.

[47]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[48]  Hartmut Michel,et al.  Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans , 1995, Nature.

[49]  R. Gennis,et al.  Possible proton relay pathways in cytochrome c oxidase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Ferguson-Miller,et al.  Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. Purification, kinetics, proton pumping, and spectral analysis. , 1992, The Journal of biological chemistry.

[51]  T. Nilsson,et al.  Proton transfer during the reaction between fully reduced cytochrome c oxidase and dioxygen: pH and deuterium isotope effects. , 1992, Biochemistry.

[52]  F. Rusnak,et al.  Properties of a copper-containing cytochrome ba3: a second terminal oxidase from the extreme thermophile Thermus thermophilus. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. Malmström Cytochrome c oxide as a proton pump. A transition-state mechanism , 1985 .